Cubic Hermite Function Integral Evaluator
Called by dpchia to evaluate the integral of a single cubic (in Hermite form) over an arbitrary interval (A,B).
Note
There is no error return from this routine because zero is indeed the mathematically correct answer when X1==X2 .
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x1 |
endpoints if interval of definition of cubic |
||
real(kind=wp), | intent(in) | :: | x2 |
endpoints if interval of definition of cubic |
||
real(kind=wp), | intent(in) | :: | f1 |
function values at the ends of the interval |
||
real(kind=wp), | intent(in) | :: | f2 |
function values at the ends of the interval |
||
real(kind=wp), | intent(in) | :: | d1 |
derivative values at the ends of the interval |
||
real(kind=wp), | intent(in) | :: | d2 |
derivative values at the ends of the interval |
||
real(kind=wp), | intent(in) | :: | a |
endpoints of interval of integration |
||
real(kind=wp), | intent(in) | :: | b |
endpoints of interval of integration |
pure function dchfie (x1, x2, f1, f2, d1, d2, a, b) result(integral) real(wp),intent(in) :: x1 !! endpoints if interval of definition of cubic real(wp),intent(in) :: x2 !! endpoints if interval of definition of cubic real(wp),intent(in) :: f1 !! function values at the ends of the interval real(wp),intent(in) :: f2 !! function values at the ends of the interval real(wp),intent(in) :: d1 !! derivative values at the ends of the interval real(wp),intent(in) :: d2 !! derivative values at the ends of the interval real(wp),intent(in) :: a !! endpoints of interval of integration real(wp),intent(in) :: b !! endpoints of interval of integration real(wp) :: integral real(wp) :: dterm, fterm, h, phia1, phia2, & phib1, phib2, psia1, psia2, psib1, psib2, & ta1, ta2, tb1, tb2, ua1, ua2, ub1, ub2 ! validity check input. if (x1 == x2) then integral = zero else h = x2 - x1 ta1 = (a - x1) / h ta2 = (x2 - a) / h tb1 = (b - x1) / h tb2 = (x2 - b) / h ua1 = ta1**3 phia1 = ua1 * (two - ta1) psia1 = ua1 * (three*ta1 - four) ua2 = ta2**3 phia2 = ua2 * (two - ta2) psia2 = -ua2 * (three*ta2 - four) ub1 = tb1**3 phib1 = ub1 * (two - tb1) psib1 = ub1 * (three*tb1 - four) ub2 = tb2**3 phib2 = ub2 * (two - tb2) psib2 = -ub2 * (three*tb2 - four) fterm = f1*(phia2 - phib2) + f2*(phib1 - phia1) dterm = ( d1*(psia2 - psib2) + d2*(psib1 - psia1) )*(h/six) integral = (half*h) * (fterm + dterm) endif end function dchfie