Set boundary conditions for dpchic
Called by dpchic to set end derivatives as requested by the user. It must be called after interior derivative values have been set.
To facilitate two-dimensional applications, includes an increment between successive values of the D-array.
Warning
This routine does no validity-checking of arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer, | intent(in) | :: | ic(2) |
array of length 2 specifying desired boundary conditions:
( see prologue to dpchic for details. ) |
||
real(kind=wp), | intent(in) | :: | vc(2) |
array of length 2 specifying desired boundary values.
|
||
integer, | intent(in) | :: | n |
number of data points. (assumes N>=2) |
||
real(kind=wp), | intent(in) | :: | x(*) |
array of independent variable values. (the elements of X are assumed to be strictly increasing.) |
||
real(kind=wp), | intent(in) | :: | h(*) |
array of interval lengths. |
||
real(kind=wp), | intent(in) | :: | slope(*) |
array of data slopes. If the data are (X(I),Y(I)), I=1(1)N, then these inputs are:
|
||
real(kind=wp), | intent(inout) | :: | d(incfd,*) |
(input) real8 array of derivative values at the data points. The value corresponding to X(I) must be stored in D(1+(I-1)INCFD), I=1(1)N. (output) the value of D at X(1) and/or X(N) is changed, if necessary, to produce the requested boundary conditions. no other entries in D are changed. |
||
integer, | intent(in) | :: | incfd |
increment between successive values in D. This argument is provided primarily for 2-D applications. |
||
integer, | intent(out) | :: | ierr |
error flag.
|
subroutine dpchce (ic, vc, n, x, h, slope, d, incfd, ierr) integer,intent(in) :: ic(2) !! array of length 2 specifying desired !! boundary conditions: !! !! * IC(1) = IBEG, desired condition at beginning of data. !! * IC(2) = IEND, desired condition at end of data. !! !! ( see prologue to [[dpchic]] for details. ) integer,intent(in) :: n !! number of data points. (assumes N>=2) integer,intent(in) :: incfd !! increment between successive values in D. !! This argument is provided primarily for 2-D applications. integer,intent(out) :: ierr !! error flag. !! !! * Normal return: !! * IERR = 0 (no errors). !! * Warning errors: !! * IERR = 1 if IBEG<0 and D(1) had to be adjusted for !! monotonicity. !! * IERR = 2 if IEND<0 and D(1+(N-1)*INCFD) had to be !! adjusted for monotonicity. !! * IERR = 3 if both of the above are true. real(wp),intent(in) :: vc(2) !! array of length 2 specifying desired boundary !! values. !! !! * VC(1) need be set only if IC(1) = 2 or 3 . !! * VC(2) need be set only if IC(2) = 2 or 3 . real(wp),intent(in) :: x(*) !! array of independent variable values. (the !! elements of X are assumed to be strictly increasing.) real(wp),intent(in) :: h(*) !! array of interval lengths. real(wp),intent(in) :: slope(*) !! array of data slopes. !! If the data are (X(I),Y(I)), I=1(1)N, then these inputs are: !! !! * H(I) = X(I+1)-X(I), !! * SLOPE(I) = (Y(I+1)-Y(I))/H(I), I=1(1)N-1. real(wp),intent(inout) :: d(incfd,*) !! (input) real*8 array of derivative values at the data points. !! The value corresponding to X(I) must be stored in !! D(1+(I-1)*INCFD), I=1(1)N. !! !! (output) the value of D at X(1) and/or X(N) is changed, if !! necessary, to produce the requested boundary conditions. !! no other entries in D are changed. integer :: ibeg, iend, ierf, index, j, k real(wp) :: stemp(3), xtemp(4) ibeg = ic(1) iend = ic(2) ierr = 0 ! set to default boundary conditions if n is too small. if ( abs(ibeg)>n ) ibeg = 0 if ( abs(iend)>n ) iend = 0 ! treat beginning boundary condition. if (ibeg /= 0) then k = abs(ibeg) if (k == 1) then ! boundary value provided. d(1,1) = vc(1) else if (k == 2) then ! boundary second derivative provided. d(1,1) = half*( (three*slope(1) - d(1,2)) - half*vc(1)*h(1) ) else if (k < 5) then ! use k-point derivative formula. ! pick up first k points, in reverse order. do j = 1, k index = k-j+1 ! index runs from k down to 1. xtemp(j) = x(index) if (j < k) stemp(j) = slope(index-1) end do ! ----------------------------- d(1,1) = dpchdf (k, xtemp, stemp, ierf) ! ----------------------------- if (ierf /= 0) then ! *** this case should never occur *** ierr = -1 call xermsg ('PCHIP', 'dpchce', 'error return from dpchdf', ierr, 1) return end if else ! use 'not a knot' condition. d(1,1) = ( three*(h(1)*slope(2) + h(2)*slope(1)) & - two*(h(1)+h(2))*d(1,2) - h(1)*d(1,3) ) / h(2) endif if (ibeg <= 0) then ! check d(1,1) for compatibility with monotonicity. if (slope(1) == zero) then if (d(1,1) /= zero) then d(1,1) = zero ierr = ierr + 1 endif else if ( dpchst(d(1,1),slope(1)) < zero) then d(1,1) = zero ierr = ierr + 1 else if ( abs(d(1,1)) > three*abs(slope(1)) ) then d(1,1) = three*slope(1) ierr = ierr + 1 endif end if end if ! treat end boundary condition. if (iend == 0) return k = abs(iend) if (k == 1) then ! boundary value provided. d(1,n) = vc(2) else if (k == 2) then ! boundary second derivative provided. d(1,n) = half*( (three*slope(n-1) - d(1,n-1)) + half*vc(2)*h(n-1) ) else if (k < 5) then ! use k-point derivative formula. ! pick up last k points. do j = 1, k index = n-k+j ! index runs from n+1-k up to n. xtemp(j) = x(index) if (j < k) stemp(j) = slope(index) end do ! ----------------------------- d(1,n) = dpchdf (k, xtemp, stemp, ierf) ! ----------------------------- if (ierf /= 0) then ! *** this case should never occur *** ierr = -1 call xermsg ('PCHIP', 'dpchce', 'error return from dpchdf', ierr, 1) return end if else ! use 'not a knot' condition. d(1,n) = ( three*(h(n-1)*slope(n-2) + h(n-2)*slope(n-1)) & - two*(h(n-1)+h(n-2))*d(1,n-1) - h(n-1)*d(1,n-2) ) / h(n-2) endif if (iend > 0) return ! check d(1,n) for compatibility with monotonicity. if (slope(n-1) == zero) then if (d(1,n) /= zero) then d(1,n) = zero ierr = ierr + 2 endif else if ( dpchst(d(1,n),slope(n-1)) < zero) then d(1,n) = zero ierr = ierr + 2 else if ( abs(d(1,n)) > three*abs(slope(n-1)) ) then d(1,n) = three*slope(n-1) ierr = ierr + 2 endif end subroutine dpchce