Monotonicity Switch Derivative Setter
Called by dpchic to adjust the values of D in the vicinity of a switch in direction of monotonicity, to produce a more "visually pleasing" curve than that given by dpchim.
Warning
This routine does no validity-checking of arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | switch |
indicates the amount of control desired over local excursions from data. |
||
integer, | intent(in) | :: | n |
number of data points. (assumes N>2). |
||
real(kind=wp), | intent(in) | :: | h(*) |
array of interval lengths. |
||
real(kind=wp), | intent(in) | :: | slope(*) |
array of data slopes. If the data are (X(I),Y(I)), I=1(1)N, then these inputs are:
|
||
real(kind=wp), | intent(inout) | :: | d(incfd,*) |
(input) array of derivative values at the data points, as determined by dpchci. (output) derivatives in the vicinity of switches in direction
of monotonicity may be adjusted to produce a more "visually
pleasing" curve.
The value corresponding to X(I) is stored in
|
||
integer, | intent(in) | :: | incfd |
increment between successive values in D. This argument is provided primarily for 2-D applications. |
||
integer, | intent(out) | :: | ierr |
error flag. should be zero. If negative, trouble in dpchsw. (should never happen.) |
subroutine dpchcs (switch, n, h, slope, d, incfd, ierr) real(wp),intent(in) :: switch !! indicates the amount of control desired over !! local excursions from data. integer,intent(in) :: n !! number of data points. (assumes N>2). real(wp),intent(in) :: h(*) !! array of interval lengths. real(wp),intent(in) :: slope(*) !! array of data slopes. !! If the data are (X(I),Y(I)), I=1(1)N, then these inputs are: !! !! * H(I) = X(I+1)-X(I), !! * SLOPE(I) = (Y(I+1)-Y(I))/H(I), I=1(1)N-1. real(wp),intent(inout) :: d(incfd,*) !! (input) array of derivative values at the data points, !! as determined by [[dpchci]]. !! !! (output) derivatives in the vicinity of switches in direction !! of monotonicity may be adjusted to produce a more "visually !! pleasing" curve. !! The value corresponding to X(I) is stored in !! `D(1+(I-1)*INCFD), I=1(1)N` !! No other entries in D are changed. integer,intent(in) :: incfd !! increment between successive values in D. !! This argument is provided primarily for 2-D applications. integer,intent(out) :: ierr !! error flag. should be zero. !! If negative, trouble in [[dpchsw]]. (should never happen.) integer :: i, indx, k, nless1 real(wp) :: del(3), dext, dfloc, dfmx, fact, slmax, wtave(2) real(wp),parameter :: fudge = four ierr = 0 nless1 = n - 1 ! loop over segments. do i = 2 , nless1 if ( dpchst(slope(i-1),slope(i))<0 ) then ! slope switches monotonicity at i-th point ! do not change d if 'up-down-up'. if ( i>2 ) then if ( dpchst(slope(i-2),slope(i))>zero ) cycle endif if ( i<nless1 ) then if ( dpchst(slope(i+1),slope(i-1))>zero ) cycle endif ! compute provisional value for d(1,i). dext = dpchsd(slope(i-1),slope(i),h(i-1),h(i)) ! determine which interval contains the extremum. if ( dpchst(dext,slope(i-1))<0 ) then ! dext and slope(i-1) have opposite signs -- extremum is in (x(i-1),x(i)). k = i - 1 ! set up to compute new values for d(1,i-1) and d(1,i). wtave(2) = dext if ( k>1 ) wtave(1) = dpchsd(slope(k-1),slope(k),h(k-1),h(k)) elseif ( dpchst(dext,slope(i-1))==0 ) then cycle else ! dext and slope(i) have opposite signs -- extremum is in (x(i),x(i+1)). k = i ! set up to compute new values for d(1,i) and d(1,i+1). wtave(1) = dext if ( k<nless1 ) wtave(2) = dpchsd(slope(k),slope(k+1),h(k),h(k+1)) endif elseif ( dpchst(slope(i-1),slope(i))==0 ) then ! at least one of slope(i-1) and slope(i) is zero -- ! check for flat-topped peak if ( i==nless1 ) cycle if ( dpchst(slope(i-1),slope(i+1))>=zero ) cycle ! we have flat-topped peak on (x(i),x(i+1)). k = i ! set up to compute new values for d(1,i) and d(1,i+1). wtave(1) = dpchsd(slope(k-1),slope(k),h(k-1),h(k)) wtave(2) = dpchsd(slope(k),slope(k+1),h(k),h(k+1)) else cycle endif ! at this point we have determined that there will be an extremum ! on (x(k),x(k+1)), where k=i or i-1, and have set array wtave-- ! wtave(1) is a weighted average of slope(k-1) and slope(k), ! if k>1 ! wtave(2) is a weighted average of slope(k) and slope(k+1), ! if k<n-1 slmax = abs(slope(k)) if ( k>1 ) slmax = max(slmax,abs(slope(k-1))) if ( k<nless1 ) slmax = max(slmax,abs(slope(k+1))) if ( k>1 ) del(1) = slope(k-1)/slmax del(2) = slope(k)/slmax if ( k<nless1 ) del(3) = slope(k+1)/slmax if ( (k>1) .and. (k<nless1) ) then ! normal case -- extremum is not in a boundary interval. fact = fudge*abs(del(3)*(del(1)-del(2))*(wtave(2)/slmax)) d(1,k) = d(1,k) + min(fact,one)*(wtave(1)-d(1,k)) fact = fudge*abs(del(1)*(del(3)-del(2))*(wtave(1)/slmax)) d(1,k+1) = d(1,k+1) + min(fact,one)*(wtave(2)-d(1,k+1)) else ! special case k=1 (which can occur only if i=2) or ! k=nless1 (which can occur only if i=nless1). fact = fudge*abs(del(2)) d(1,i) = min(fact,one)*wtave(i-k+1) ! note that i-k+1 = 1 if k=i (=nless1), ! i-k+1 = 2 if k=i-1(=1). endif ! adjust if necessary to limit excursions from data. if ( switch>zero ) then dfloc = h(k)*abs(slope(k)) if ( k>1 ) dfloc = max(dfloc,h(k-1)*abs(slope(k-1))) if ( k<nless1 ) dfloc = max(dfloc,h(k+1)*abs(slope(k+1))) dfmx = switch*dfloc indx = i - k + 1 ! indx = 1 if k=i, 2 if k=i-1. call dpchsw(dfmx,indx,d(1,k),d(1,k+1),h(k),slope(k),ierr) if ( ierr/=0 ) return endif ! end of segment loop. enddo end subroutine dpchcs