newuoa.f90 Source File


This file depends on

sourcefile~~newuoa.f90~~EfferentGraph sourcefile~newuoa.f90 newuoa.f90 sourcefile~kind_module.f90 kind_module.f90 sourcefile~newuoa.f90->sourcefile~kind_module.f90

Files dependent on this one

sourcefile~~newuoa.f90~~AfferentGraph sourcefile~newuoa.f90 newuoa.f90 sourcefile~powellopt.f90 powellopt.f90 sourcefile~powellopt.f90->sourcefile~newuoa.f90

Source Code

!*****************************************************************************************
!>
!  NEWUOA: **NEW** **U**nconstrained **O**ptimization **A**lgorithm
!
!  The purpose of NEWUOA is to seek
!  the least value of a function F of several variables, when derivatives
!  are not available.
!  The main new feature of the method is that quadratic
!  models are updated using only about ```NPT=2N+1``` interpolation conditions,
!  the remaining freedom being taken up by minimizing the Frobenius norm of
!  the change to the second derivative matrix of the model.
!
!  The new software was developed from [[UOBYQA]], which also forms quadratic
!  models from interpolation conditions. That method requires ```NPT=(N+1)(N+2)/2```
!  conditions, however, because they have to define all the parameters of the
!  model. The least Frobenius norm updating procedure with ```NPT=2N+1``` is usually
!  much more efficient when ```N``` is large, because the work of each iteration is
!  much less than before, and in some experiments the number of calculations
!  of the objective function seems to be only of magnitude ```N```.
!
!# References
!
!  * "[The NEWUOA software for unconstrained optimization without
!    derivatives](http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2004_08.pdf)",
!    2004/NA08
!  * "[The NEWUOA software for unconstrained minimization
!    without derivatives](http://link.springer.com/chapter/10.1007%2F0-387-30065-1_16)", 
!    in Large-Scale Nonlinear Optimization, editors G. Di
!    Pillo and M. Roma, Springer (2006), pages 255-297.
!  
!# History
!  * M.J.D. Powell, December 16th, 2004 : It is hoped that the software will
!    be helpful to much future research and to many applications. There are no
!    restrictions on or charges for its use. 
!  * Jacob Williams, July 2015 : refactoring of the code into modern Fortran.

module newuoa_module
 
    use kind_module, only: wp
 
    private
 
    abstract interface
    subroutine func (n, x, f)  !! calfun interface
        import :: wp
        implicit none
        integer :: n
        real (wp) :: x (*)
        real (wp) :: f
    end subroutine func
    end interface
 
    public :: newuoa
    public :: newuoa_test
 
contains
 
!*****************************************************************************************
!>
!  This subroutine seeks the least value of a function of many variables,
!  by a trust region method that forms quadratic models by interpolation.
!  There can be some freedom in the interpolation conditions, which is
!  taken up by minimizing the Frobenius norm of the change to the second
!  derivative of the quadratic model, beginning with a zero matrix.

    subroutine newuoa (n, npt, x, rhobeg, rhoend, iprint, maxfun, calfun)
    
        implicit none
        
        integer,intent(in)                  :: n       !! the number of variables. must be at least 2.
        integer,intent(in)                  :: npt     !! The number of interpolation conditions.
                                                       !! Its value must be in the interval `[N+2,(N+1)(N+2)/2]`.
        real(wp),dimension(*),intent(inout) :: x       !! Initial values of the variables must be set in X(1),X(2),...,X(N). They
                                                       !! will be changed to the values that give the least calculated F.
        real(wp),intent(in)                 :: rhobeg  !! RHOBEG and RHOEND must be set to the initial and final values of a trust
                                                       !! region radius, so both must be positive with RHOEND<=RHOBEG. Typically
                                                       !! RHOBEG should be about one tenth of the greatest expected change to a
                                                       !! variable, and RHOEND should indicate the accuracy that is required in
                                                       !! the final values of the variables.
        real(wp),intent(in)                 :: rhoend  !! RHOBEG and RHOEND must be set to the initial and final values of a trust
                                                       !! region radius, so both must be positive with RHOEND<=RHOBEG. Typically
                                                       !! RHOBEG should be about one tenth of the greatest expected change to a
                                                       !! variable, and RHOEND should indicate the accuracy that is required in
                                                       !! the final values of the variables. 
        integer,intent(in)                  :: iprint  !! The value of IPRINT should be set to 0, 1, 2 or 3, which controls the
                                                       !! amount of printing. Specifically, there is no output if IPRINT=0 and
                                                       !! there is output only at the return if IPRINT=1. Otherwise, each new
                                                       !! value of RHO is printed, with the best vector of variables so far and
                                                       !! the corresponding value of the objective function. Further, each new
                                                       !! value of F with its variables are output if IPRINT=3.
        integer,intent(in)                  :: maxfun  !! an upper bound on the number of calls of CALFUN.
        procedure(func)                     :: calfun  !! It must set F to the value of the objective function 
                                                       !! for the variables `X(1),X(2),...,X(N)`.

        real(wp),dimension(:),allocatable :: w
        integer :: np,nptm,ndim,ixb,ixo,ixn,ixp,ifv,igq,ihq,ipq,ibmat,izmat,id,ivl,iw
        
        ! Partition the working space array, so that different parts of it can be
        ! treated separately by the subroutine that performs the main calculation.

        np = n + 1
        nptm = npt - np
        if (npt < n+2 .or. npt > ((n+2)*np)/2) then
            write(*,*) 'Return from NEWUOA because NPT is not in the required interval'
            return
        end if
        
        ! The array W will be used for working space
        allocate(w((NPT+13)*(NPT+N)+3*N*(N+3)/2))
        
        ndim = npt + n
        ixb = 1
        ixo = ixb + n
        ixn = ixo + n
        ixp = ixn + n
        ifv = ixp + n * npt
        igq = ifv + npt
        ihq = igq + n
        ipq = ihq + (n*np) / 2
        ibmat = ipq + npt
        izmat = ibmat + ndim * n
        id = izmat + npt * nptm
        ivl = id + n
        iw = ivl + ndim

        ! The above settings provide a partition of W for subroutine NEWUOB.
        ! The partition requires the first NPT*(NPT+N)+5*N*(N+3)/2 elements of
        ! W plus the space that is needed by the last array of NEWUOB.

        call newuob (n, npt, x, rhobeg, rhoend, iprint, maxfun, w(ixb), w(ixo), w(ixn), &
                     w(ixp), w(ifv), w(igq), w(ihq), w(ipq), w(ibmat), w(izmat), ndim, &
                     w(id), w(ivl), w(iw), calfun)

        deallocate(w)

    end subroutine newuoa
!*****************************************************************************************
 
    subroutine newuob (n, npt, x, rhobeg, rhoend, iprint, maxfun, xbase, xopt, xnew, xpt, &
     fval, gq, hq, pq, bmat, zmat, ndim, d, vlag, w, calfun)
     
        implicit real (wp) (a-h, o-z)
     
        dimension x (*), xbase (*), xopt (*), xnew (*), xpt (npt,*), fval (*), gq (*), hq &
         (*), pq (*), bmat (ndim,*), zmat (npt,*), d (*), vlag (*), w (*)
        procedure (func) :: calfun
!
!     The arguments N, NPT, X, RHOBEG, RHOEND, IPRINT and MAXFUN are identical
!       to the corresponding arguments in SUBROUTINE NEWUOA.
!     XBASE will hold a shift of origin that should reduce the contributions
!       from rounding errors to values of the model and Lagrange functions.
!     XOPT will be set to the displacement from XBASE of the vector of
!       variables that provides the least calculated F so far.
!     XNEW will be set to the displacement from XBASE of the vector of
!       variables for the current calculation of F.
!     XPT will contain the interpolation point coordinates relative to XBASE.
!     FVAL will hold the values of F at the interpolation points.
!     GQ will hold the gradient of the quadratic model at XBASE.
!     HQ will hold the explicit second derivatives of the quadratic model.
!     PQ will contain the parameters of the implicit second derivatives of
!       the quadratic model.
!     BMAT will hold the last N columns of H.
!     ZMAT will hold the factorization of the leading NPT by NPT submatrix of
!       H, this factorization being ZMAT times Diag(DZ) times ZMAT^T, where
!       the elements of DZ are plus or minus one, as specified by IDZ.
!     NDIM is the first dimension of BMAT and has the value NPT+N.
!     D is reserved for trial steps from XOPT.
!     VLAG will contain the values of the Lagrange functions at a new point X.
!       They are part of a product that requires VLAG to be of length NDIM.
!     The array W will be used for working space. Its length must be at least
!       10*NDIM = 10*(NPT+N).
!
!     Set some constants.
!
        half = 0.5_wp
        one = 1.0_wp
        tenth = 0.1_wp
        zero = 0.0_wp
        np = n + 1
        nh = (n*np) / 2
        nptm = npt - np
        nftest = max (maxfun, 1)
!
!     Set the initial elements of XPT, BMAT, HQ, PQ and ZMAT to zero.
!
        do j = 1, n
            xbase (j) = x (j)
            do k = 1, npt
                xpt (k, j) = zero
            end do
            do i = 1, ndim
                bmat (i, j) = zero
            end do
        end do
        do ih = 1, nh
            hq (ih) = zero
        end do
        do k = 1, npt
            pq (k) = zero
            do j = 1, nptm
                zmat (k, j) = zero
            end do
        end do
!
!     Begin the initialization procedure. NF becomes one more than the number
!     of function values so far. The coordinates of the displacement of the
!     next initial interpolation point from XBASE are set in XPT(NF,.).
!
        rhosq = rhobeg * rhobeg
        recip = one / rhosq
        reciq = sqrt (half) / rhosq
        nf = 0
50      nfm = nf
        nfmm = nf - n
        nf = nf + 1
        if (nfm <= 2*n) then
            if (nfm >= 1 .and. nfm <= n) then
                xpt (nf, nfm) = rhobeg
            else if (nfm > n) then
                xpt (nf, nfmm) = - rhobeg
            end if
        else
            itemp = (nfmm-1) / n
            jpt = nfm - itemp * n - n
            ipt = jpt + itemp
            if (ipt > n) then
                itemp = jpt
                jpt = ipt - n
                ipt = itemp
            end if
            xipt = rhobeg
            if (fval(ipt+np) < fval(ipt+1)) xipt = - xipt
            xjpt = rhobeg
            if (fval(jpt+np) < fval(jpt+1)) xjpt = - xjpt
            xpt (nf, ipt) = xipt
            xpt (nf, jpt) = xjpt
        end if
!
!     Calculate the next value of F, label 70 being reached immediately
!     after this calculation. The least function value so far and its index
!     are required.
!
        do j = 1, n
            x (j) = xpt (nf, j) + xbase (j)
        end do
        go to 310
70      fval (nf) = f
        if (nf == 1) then
            fbeg = f
            fopt = f
            kopt = 1
        else if (f < fopt) then
            fopt = f
            kopt = nf
        end if
!
!     Set the nonzero initial elements of BMAT and the quadratic model in
!     the cases when NF is at most 2*N+1.
!
        if (nfm <= 2*n) then
            if (nfm >= 1 .and. nfm <= n) then
                gq (nfm) = (f-fbeg) / rhobeg
                if (npt < nf+n) then
                    bmat (1, nfm) = - one / rhobeg
                    bmat (nf, nfm) = one / rhobeg
                    bmat (npt+nfm, nfm) = - half * rhosq
                end if
            else if (nfm > n) then
                bmat (nf-n, nfmm) = half / rhobeg
                bmat (nf, nfmm) = - half / rhobeg
                zmat (1, nfmm) = - reciq - reciq
                zmat (nf-n, nfmm) = reciq
                zmat (nf, nfmm) = reciq
                ih = (nfmm*(nfmm+1)) / 2
                temp = (fbeg-f) / rhobeg
                hq (ih) = (gq(nfmm)-temp) / rhobeg
                gq (nfmm) = half * (gq(nfmm)+temp)
            end if
!
!     Set the off-diagonal second derivatives of the Lagrange functions and
!     the initial quadratic model.
!
        else
            ih = (ipt*(ipt-1)) / 2 + jpt
            if (xipt < zero) ipt = ipt + n
            if (xjpt < zero) jpt = jpt + n
            zmat (1, nfmm) = recip
            zmat (nf, nfmm) = recip
            zmat (ipt+1, nfmm) = - recip
            zmat (jpt+1, nfmm) = - recip
            hq (ih) = (fbeg-fval(ipt+1)-fval(jpt+1)+f) / (xipt*xjpt)
        end if
        if (nf < npt) go to 50
!
!     Begin the iterative procedure, because the initial model is complete.
!
        rho = rhobeg
        delta = rho
        idz = 1
        diffa = zero
        diffb = zero
        itest = 0
        xoptsq = zero
        do i = 1, n
            xopt (i) = xpt (kopt, i)
            xoptsq = xoptsq + xopt (i) ** 2
        end do
90      nfsav = nf
!
!     Generate the next trust region step and test its length. Set KNEW
!     to -1 if the purpose of the next F will be to improve the model.
!
100     knew = 0
        call trsapp (n, npt, xopt, xpt, gq, hq, pq, delta, d, w, w(np), w(np+n), &
                     w(np+2*n), crvmin)
        dsq = zero
        do i = 1, n
            dsq = dsq + d (i) ** 2
        end do
        dnorm = min (delta, sqrt(dsq))
        if (dnorm < half*rho) then
            knew = - 1
            delta = tenth * delta
            ratio = - 1.0_wp
            if (delta <= 1.5_wp*rho) delta = rho
            if (nf <= nfsav+2) go to 460
            temp = 0.125_wp * crvmin * rho * rho
            if (temp <= max(diffa, diffb, diffc)) go to 460
            go to 490
        end if
!
!     Shift XBASE if XOPT may be too far from XBASE. First make the changes
!     to BMAT that do not depend on ZMAT.
!
120     if (dsq <= 1.0e-3_wp*xoptsq) then
            tempq = 0.25_wp * xoptsq
            do k = 1, npt
                sum = zero
                do i = 1, n
                    sum = sum + xpt (k, i) * xopt (i)
                end do
                temp = pq (k) * sum
                sum = sum - half * xoptsq
                w (npt+k) = sum
                do i = 1, n
                    gq (i) = gq (i) + temp * xpt (k, i)
                    xpt (k, i) = xpt (k, i) - half * xopt (i)
                    vlag (i) = bmat (k, i)
                    w (i) = sum * xpt (k, i) + tempq * xopt (i)
                    ip = npt + i
                    do j = 1, i
                        bmat (ip, j) = bmat (ip, j) + vlag (i) * w (j) + w (i) * vlag (j)
                    end do
                end do
            end do
!
!     Then the revisions of BMAT that depend on ZMAT are calculated.
!
            do k = 1, nptm
                sumz = zero
                do i = 1, npt
                    sumz = sumz + zmat (i, k)
                    w (i) = w (npt+i) * zmat (i, k)
                end do
                do j = 1, n
                    sum = tempq * sumz * xopt (j)
                    do i = 1, npt
                        sum = sum + w (i) * xpt (i, j)
                    end do
                    vlag (j) = sum
                    if (k < idz) sum = - sum
                    do i = 1, npt
                        bmat (i, j) = bmat (i, j) + sum * zmat (i, k)
                    end do
                end do
                do i = 1, n
                    ip = i + npt
                    temp = vlag (i)
                    if (k < idz) temp = - temp
                    do j = 1, i
                        bmat (ip, j) = bmat (ip, j) + temp * vlag (j)
                    end do
                end do
            end do
!
!     The following instructions complete the shift of XBASE, including
!     the changes to the parameters of the quadratic model.
!
            ih = 0
            do j = 1, n
                w (j) = zero
                do k = 1, npt
                    w (j) = w (j) + pq (k) * xpt (k, j)
                    xpt (k, j) = xpt (k, j) - half * xopt (j)
                end do
                do i = 1, j
                    ih = ih + 1
                    if (i < j) gq (j) = gq (j) + hq (ih) * xopt (i)
                    gq (i) = gq (i) + hq (ih) * xopt (j)
                    hq (ih) = hq (ih) + w (i) * xopt (j) + xopt (i) * w (j)
                    bmat (npt+i, j) = bmat (npt+j, i)
                end do
            end do
            do j = 1, n
                xbase (j) = xbase (j) + xopt (j)
                xopt (j) = zero
            end do
            xoptsq = zero
        end if
!
!     Pick the model step if KNEW is positive. A different choice of D
!     may be made later, if the choice of D by BIGLAG causes substantial
!     cancellation in DENOM.
!
        if (knew > 0) then
            call biglag (n, npt, xopt, xpt, bmat, zmat, idz, ndim, knew, dstep, d, alpha, &
                         vlag, vlag(npt+1), w, w(np), w(np+n))
        end if
!
!     Calculate VLAG and BETA for the current choice of D. The first NPT
!     components of W_check will be held in W.
!
        do k = 1, npt
            suma = zero
            sumb = zero
            sum = zero
            do j = 1, n
                suma = suma + xpt (k, j) * d (j)
                sumb = sumb + xpt (k, j) * xopt (j)
                sum = sum + bmat (k, j) * d (j)
            end do
            w (k) = suma * (half*suma+sumb)
            vlag (k) = sum
        end do
        beta = zero
        do k = 1, nptm
            sum = zero
            do i = 1, npt
                sum = sum + zmat (i, k) * w (i)
            end do
            if (k < idz) then
                beta = beta + sum * sum
                sum = - sum
            else
                beta = beta - sum * sum
            end if
            do i = 1, npt
                vlag (i) = vlag (i) + sum * zmat (i, k)
            end do
        end do
        bsum = zero
        dx = zero
        do j = 1, n
            sum = zero
            do i = 1, npt
                sum = sum + w (i) * bmat (i, j)
            end do
            bsum = bsum + sum * d (j)
            jp = npt + j
            do k = 1, n
                sum = sum + bmat (jp, k) * d (k)
            end do
            vlag (jp) = sum
            bsum = bsum + sum * d (j)
            dx = dx + d (j) * xopt (j)
        end do
        beta = dx * dx + dsq * (xoptsq+dx+dx+half*dsq) + beta - bsum
        vlag (kopt) = vlag (kopt) + one
!
!     If KNEW is positive and if the cancellation in DENOM is unacceptable,
!     then BIGDEN calculates an alternative model step, XNEW being used for
!     working space.
!
        if (knew > 0) then
            temp = one + alpha * beta / vlag (knew) ** 2
            if (abs(temp) <= 0.8_wp) then
                call bigden (n, npt, xopt, xpt, bmat, zmat, idz, ndim, kopt, knew, d, w, &
                             vlag, beta, xnew, w(ndim+1), w(6*ndim+1))
            end if
        end if
!
!     Calculate the next value of the objective function.
!
290     do i = 1, n
            xnew (i) = xopt (i) + d (i)
            x (i) = xbase (i) + xnew (i)
        end do
        nf = nf + 1
310     if (nf > nftest) then
            nf = nf - 1
            if (iprint > 0) print 320
320         format (/ 4 x, 'Return from NEWUOA because CALFUN has been',&
            ' called MAXFUN times.')
            go to 530
        end if
        call calfun (n, x, f)
        if (iprint == 3) then
            print 330, nf, f, (x(i), i=1, n)
330         format (/ 4 x, 'Function number', i6, '    F =', 1 pd18.10,&
            '    The corresponding X is:' / (2 x, 5d15.6))
        end if
        if (nf <= npt) go to 70
        if (knew ==-1) go to 530
!
!     Use the quadratic model to predict the change in F due to the step D,
!     and set DIFF to the error of this prediction.
!
        vquad = zero
        ih = 0
        do j = 1, n
            vquad = vquad + d (j) * gq (j)
            do i = 1, j
                ih = ih + 1
                temp = d (i) * xnew (j) + d (j) * xopt (i)
                if (i == j) temp = half * temp
                vquad = vquad + temp * hq (ih)
            end do
        end do
        do k = 1, npt
            vquad = vquad + pq (k) * w (k)
        end do
        diff = f - fopt - vquad
        diffc = diffb
        diffb = diffa
        diffa = abs (diff)
        if (dnorm > rho) nfsav = nf
!
!     Update FOPT and XOPT if the new F is the least value of the objective
!     function so far. The branch when KNEW is positive occurs if D is not
!     a trust region step.
!
        fsave = fopt
        if (f < fopt) then
            fopt = f
            xoptsq = zero
            do i = 1, n
                xopt (i) = xnew (i)
                xoptsq = xoptsq + xopt (i) ** 2
            end do
        end if
        ksave = knew
        if (knew > 0) go to 410
!
!     Pick the next value of DELTA after a trust region step.
!
        if (vquad >= zero) then
            if (iprint > 0) print 370
370         format (/ 4 x, 'Return from NEWUOA because a trust',&
            ' region step has failed to reduce Q.')
            go to 530
        end if
        ratio = (f-fsave) / vquad
        if (ratio <= tenth) then
            delta = half * dnorm
        else if (ratio <= 0.7_wp) then
            delta = max (half*delta, dnorm)
        else
            delta = max (half*delta, dnorm+dnorm)
        end if
        if (delta <= 1.5_wp*rho) delta = rho
!
!     Set KNEW to the index of the next interpolation point to be deleted.
!
        rhosq = max (tenth*delta, rho) ** 2
        ktemp = 0
        detrat = zero
        if (f >= fsave) then
            ktemp = kopt
            detrat = one
        end if
        do k = 1, npt
            hdiag = zero
            do j = 1, nptm
                temp = one
                if (j < idz) temp = - one
                hdiag = hdiag + temp * zmat (k, j) ** 2
            end do
            temp = abs (beta*hdiag+vlag(k)**2)
            distsq = zero
            do j = 1, n
                distsq = distsq + (xpt(k, j)-xopt(j)) ** 2
            end do
            if (distsq > rhosq) temp = temp * (distsq/rhosq) ** 3
            if (temp > detrat .and. k /= ktemp) then
                detrat = temp
                knew = k
            end if
        end do
        if (knew == 0) go to 460
!
!     Update BMAT, ZMAT and IDZ, so that the KNEW-th interpolation point
!     can be moved. Begin the updating of the quadratic model, starting
!     with the explicit second derivative term.
!
410     call update (n, npt, bmat, zmat, idz, ndim, vlag, beta, knew, w)
        fval (knew) = f
        ih = 0
        do i = 1, n
            temp = pq (knew) * xpt (knew, i)
            do j = 1, i
                ih = ih + 1
                hq (ih) = hq (ih) + temp * xpt (knew, j)
            end do
        end do
        pq (knew) = zero
!
!     Update the other second derivative parameters, and then the gradient
!     vector of the model. Also include the new interpolation point.
!
        do j = 1, nptm
            temp = diff * zmat (knew, j)
            if (j < idz) temp = - temp
            do k = 1, npt
                pq (k) = pq (k) + temp * zmat (k, j)
            end do
        end do
        gqsq = zero
        do i = 1, n
            gq (i) = gq (i) + diff * bmat (knew, i)
            gqsq = gqsq + gq (i) ** 2
            xpt (knew, i) = xnew (i)
        end do
!
!     If a trust region step makes a small change to the objective function,
!     then calculate the gradient of the least Frobenius norm interpolant at
!     XBASE, and store it in W, using VLAG for a vector of right hand sides.
!
        if (ksave == 0 .and. delta == rho) then
            if (abs(ratio) > 1.0e-2_wp) then
                itest = 0
            else
                do k = 1, npt
                    vlag (k) = fval (k) - fval (kopt)
                end do
                gisq = zero
                do i = 1, n
                    sum = zero
                    do k = 1, npt
                        sum = sum + bmat (k, i) * vlag (k)
                    end do
                    gisq = gisq + sum * sum
                    w (i) = sum
                end do
!
!     Test whether to replace the new quadratic model by the least Frobenius
!     norm interpolant, making the replacement if the test is satisfied.
!
                itest = itest + 1
                if (gqsq < 100.0_wp*gisq) itest = 0
                if (itest >= 3) then
                    do i = 1, n
                        gq (i) = w (i)
                    end do
                    do ih = 1, nh
                        hq (ih) = zero
                    end do
                    do j = 1, nptm
                        w (j) = zero
                        do k = 1, npt
                            w (j) = w (j) + vlag (k) * zmat (k, j)
                        end do
                        if (j < idz) w (j) = - w (j)
                    end do
                    do k = 1, npt
                        pq (k) = zero
                        do j = 1, nptm
                            pq (k) = pq (k) + zmat (k, j) * w (j)
                        end do
                    end do
                    itest = 0
                end if
            end if
        end if
        if (f < fsave) kopt = knew
!
!     If a trust region step has provided a sufficient decrease in F, then
!     branch for another trust region calculation. The case KSAVE>0 occurs
!     when the new function value was calculated by a model step.
!
        if (f <= fsave+tenth*vquad) go to 100
        if (ksave > 0) go to 100
!
!     Alternatively, find out if the interpolation points are close enough
!     to the best point so far.
!
        knew = 0
460     distsq = 4.0_wp * delta * delta
        do k = 1, npt
            sum = zero
            do j = 1, n
                sum = sum + (xpt(k, j)-xopt(j)) ** 2
            end do
            if (sum > distsq) then
                knew = k
                distsq = sum
            end if
        end do
!
!     If KNEW is positive, then set DSTEP, and branch back for the next
!     iteration, which will generate a "model step".
!
        if (knew > 0) then
            dstep = max (min(tenth*sqrt(distsq), half*delta), rho)
            dsq = dstep * dstep
            go to 120
        end if
        if (ratio > zero) go to 100
        if (max(delta, dnorm) > rho) go to 100
!
!     The calculations with the current value of RHO are complete. Pick the
!     next values of RHO and DELTA.
!
490     if (rho > rhoend) then
            delta = half * rho
            ratio = rho / rhoend
            if (ratio <= 16.0_wp) then
                rho = rhoend
            else if (ratio <= 250.0_wp) then
                rho = sqrt (ratio) * rhoend
            else
                rho = tenth * rho
            end if
            delta = max (delta, rho)
            if (iprint >= 2) then
                if (iprint >= 3) print 500
500             format (5 x)
                print 510, rho, nf
510             format (/ 4 x, 'New RHO =', 1 pd11.4, 5 x, 'Number of',&
                ' function values =', i6)
                print 520, fopt, (xbase(i)+xopt(i), i=1, n)
520             format (4 x, 'Least value of F =', 1 pd23.15, 9 x,&
                'The corresponding X is:'/(2 x, 5d15.6))
            end if
            go to 90
        end if
!
!     Return from the calculation, after another Newton-Raphson step, if
!     it is too short to have been tried before.
!
        if (knew ==-1) go to 290
530     if (fopt <= f) then
            do i = 1, n
                x (i) = xbase (i) + xopt (i)
            end do
            f = fopt
        end if
        if (iprint >= 1) then
            print 550, nf
550         format (/ 4 x, 'At the return from NEWUOA', 5 x,&
            'Number of function values =', i6)
            print 520, f, (x(i), i=1, n)
        end if

    end subroutine newuob
 
    subroutine bigden (n, npt, xopt, xpt, bmat, zmat, idz, ndim, kopt, knew, d, w, vlag, &
                       beta, s, wvec, prod)
                       
        implicit real (wp) (a-h, o-z)

        dimension xopt (*), xpt (npt,*), bmat (ndim,*), zmat (npt,*), d (*), w (*), vlag &
         (*), s (*), wvec (ndim,*), prod (ndim,*)
        dimension den (9), denex (9), par (9)
!
!     N is the number of variables.
!     NPT is the number of interpolation equations.
!     XOPT is the best interpolation point so far.
!     XPT contains the coordinates of the current interpolation points.
!     BMAT provides the last N columns of H.
!     ZMAT and IDZ give a factorization of the first NPT by NPT submatrix of H.
!     NDIM is the first dimension of BMAT and has the value NPT+N.
!     KOPT is the index of the optimal interpolation point.
!     KNEW is the index of the interpolation point that is going to be moved.
!     D will be set to the step from XOPT to the new point, and on entry it
!       should be the D that was calculated by the last call of BIGLAG. The
!       length of the initial D provides a trust region bound on the final D.
!     W will be set to Wcheck for the final choice of D.
!     VLAG will be set to Theta*Wcheck+e_b for the final choice of D.
!     BETA will be set to the value that will occur in the updating formula
!       when the KNEW-th interpolation point is moved to its new position.
!     S, WVEC, PROD and the private arrays DEN, DENEX and PAR will be used
!       for working space.
!
!     D is calculated in a way that should provide a denominator with a large
!     modulus in the updating formula when the KNEW-th interpolation point is
!     shifted to the new position XOPT+D.
!
!     Set some constants.
!
        half = 0.5_wp
        one = 1.0_wp
        quart = 0.25_wp
        two = 2.0_wp
        zero = 0.0_wp
        twopi = 8.0_wp * atan (one)
        nptm = npt - n - 1
!
!     Store the first NPT elements of the KNEW-th column of H in W(N+1)
!     to W(N+NPT).
!
        do k = 1, npt
            w (n+k) = zero
        end do
        do j = 1, nptm
            temp = zmat (knew, j)
            if (j < idz) temp = - temp
            do k = 1, npt
                w (n+k) = w (n+k) + temp * zmat (k, j)
            end do
        end do
        alpha = w (n+knew)
!
!     The initial search direction D is taken from the last call of BIGLAG,
!     and the initial S is set below, usually to the direction from X_OPT
!     to X_KNEW, but a different direction to an interpolation point may
!     be chosen, in order to prevent S from being nearly parallel to D.
!
        dd = zero
        ds = zero
        ss = zero
        xoptsq = zero
        do i = 1, n
            dd = dd + d (i) ** 2
            s (i) = xpt (knew, i) - xopt (i)
            ds = ds + d (i) * s (i)
            ss = ss + s (i) ** 2
            xoptsq = xoptsq + xopt (i) ** 2
        end do
        if (ds*ds > 0.99_wp*dd*ss) then
            ksav = knew
            dtest = ds * ds / ss
            do k = 1, npt
                if (k /= kopt) then
                    dstemp = zero
                    sstemp = zero
                    do i = 1, n
                        diff = xpt (k, i) - xopt (i)
                        dstemp = dstemp + d (i) * diff
                        sstemp = sstemp + diff * diff
                    end do
                    if (dstemp*dstemp/sstemp < dtest) then
                        ksav = k
                        dtest = dstemp * dstemp / sstemp
                        ds = dstemp
                        ss = sstemp
                    end if
                end if
            end do
            do i = 1, n
                s (i) = xpt (ksav, i) - xopt (i)
            end do
        end if
        ssden = dd * ss - ds * ds
        iterc = 0
        densav = zero
!
!     Begin the iteration by overwriting S with a vector that has the
!     required length and direction.
!
70      iterc = iterc + 1
        temp = one / sqrt (ssden)
        xoptd = zero
        xopts = zero
        do i = 1, n
            s (i) = temp * (dd*s(i)-ds*d(i))
            xoptd = xoptd + xopt (i) * d (i)
            xopts = xopts + xopt (i) * s (i)
        end do
!
!     Set the coefficients of the first two terms of BETA.
!
        tempa = half * xoptd * xoptd
        tempb = half * xopts * xopts
        den (1) = dd * (xoptsq+half*dd) + tempa + tempb
        den (2) = two * xoptd * dd
        den (3) = two * xopts * dd
        den (4) = tempa - tempb
        den (5) = xoptd * xopts
        do i = 6, 9
            den (i) = zero
        end do
!
!     Put the coefficients of Wcheck in WVEC.
!
        do k = 1, npt
            tempa = zero
            tempb = zero
            tempc = zero
            do i = 1, n
                tempa = tempa + xpt (k, i) * d (i)
                tempb = tempb + xpt (k, i) * s (i)
                tempc = tempc + xpt (k, i) * xopt (i)
            end do
            wvec (k, 1) = quart * (tempa*tempa+tempb*tempb)
            wvec (k, 2) = tempa * tempc
            wvec (k, 3) = tempb * tempc
            wvec (k, 4) = quart * (tempa*tempa-tempb*tempb)
            wvec (k, 5) = half * tempa * tempb
        end do
        do i = 1, n
            ip = i + npt
            wvec (ip, 1) = zero
            wvec (ip, 2) = d (i)
            wvec (ip, 3) = s (i)
            wvec (ip, 4) = zero
            wvec (ip, 5) = zero
        end do
!
!     Put the coefficents of THETA*Wcheck in PROD.
!
        do jc = 1, 5
            nw = npt
            if (jc == 2 .or. jc == 3) nw = ndim
            do k = 1, npt
                prod (k, jc) = zero
            end do
            do j = 1, nptm
                sum = zero
                do k = 1, npt
                    sum = sum + zmat (k, j) * wvec (k, jc)
                end do
                if (j < idz) sum = - sum
                do k = 1, npt
                    prod (k, jc) = prod (k, jc) + sum * zmat (k, j)
                end do
            end do
            if (nw == ndim) then
                do k = 1, npt
                    sum = zero
                    do j = 1, n
                        sum = sum + bmat (k, j) * wvec (npt+j, jc)
                    end do
                    prod (k, jc) = prod (k, jc) + sum
                end do
            end if
            do j = 1, n
                sum = zero
                do i = 1, nw
                    sum = sum + bmat (i, j) * wvec (i, jc)
                end do
                prod (npt+j, jc) = sum
            end do
        end do
!
!     Include in DEN the part of BETA that depends on THETA.
!
        do k = 1, ndim
            sum = zero
            do i = 1, 5
                par (i) = half * prod (k, i) * wvec (k, i)
                sum = sum + par (i)
            end do
            den (1) = den (1) - par (1) - sum
            tempa = prod (k, 1) * wvec (k, 2) + prod (k, 2) * wvec (k, 1)
            tempb = prod (k, 2) * wvec (k, 4) + prod (k, 4) * wvec (k, 2)
            tempc = prod (k, 3) * wvec (k, 5) + prod (k, 5) * wvec (k, 3)
            den (2) = den (2) - tempa - half * (tempb+tempc)
            den (6) = den (6) - half * (tempb-tempc)
            tempa = prod (k, 1) * wvec (k, 3) + prod (k, 3) * wvec (k, 1)
            tempb = prod (k, 2) * wvec (k, 5) + prod (k, 5) * wvec (k, 2)
            tempc = prod (k, 3) * wvec (k, 4) + prod (k, 4) * wvec (k, 3)
            den (3) = den (3) - tempa - half * (tempb-tempc)
            den (7) = den (7) - half * (tempb+tempc)
            tempa = prod (k, 1) * wvec (k, 4) + prod (k, 4) * wvec (k, 1)
            den (4) = den (4) - tempa - par (2) + par (3)
            tempa = prod (k, 1) * wvec (k, 5) + prod (k, 5) * wvec (k, 1)
            tempb = prod (k, 2) * wvec (k, 3) + prod (k, 3) * wvec (k, 2)
            den (5) = den (5) - tempa - half * tempb
            den (8) = den (8) - par (4) + par (5)
            tempa = prod (k, 4) * wvec (k, 5) + prod (k, 5) * wvec (k, 4)
            den (9) = den (9) - half * tempa
        end do
!
!     Extend DEN so that it holds all the coefficients of DENOM.
!
        sum = zero
        do i = 1, 5
            par (i) = half * prod (knew, i) ** 2
            sum = sum + par (i)
        end do
        denex (1) = alpha * den (1) + par (1) + sum
        tempa = two * prod (knew, 1) * prod (knew, 2)
        tempb = prod (knew, 2) * prod (knew, 4)
        tempc = prod (knew, 3) * prod (knew, 5)
        denex (2) = alpha * den (2) + tempa + tempb + tempc
        denex (6) = alpha * den (6) + tempb - tempc
        tempa = two * prod (knew, 1) * prod (knew, 3)
        tempb = prod (knew, 2) * prod (knew, 5)
        tempc = prod (knew, 3) * prod (knew, 4)
        denex (3) = alpha * den (3) + tempa + tempb - tempc
        denex (7) = alpha * den (7) + tempb + tempc
        tempa = two * prod (knew, 1) * prod (knew, 4)
        denex (4) = alpha * den (4) + tempa + par (2) - par (3)
        tempa = two * prod (knew, 1) * prod (knew, 5)
        denex (5) = alpha * den (5) + tempa + prod (knew, 2) * prod (knew, 3)
        denex (8) = alpha * den (8) + par (4) - par (5)
        denex (9) = alpha * den (9) + prod (knew, 4) * prod (knew, 5)
!
!     Seek the value of the angle that maximizes the modulus of DENOM.
!
        sum = denex (1) + denex (2) + denex (4) + denex (6) + denex (8)
        denold = sum
        denmax = sum
        isave = 0
        iu = 49
        temp = twopi / real (iu+1, wp)
        par (1) = one
        do i = 1, iu
            angle = real (i, wp) * temp
            par (2) = cos (angle)
            par (3) = sin (angle)
            do j = 4, 8, 2
                par (j) = par (2) * par (j-2) - par (3) * par (j-1)
                par (j+1) = par (2) * par (j-1) + par (3) * par (j-2)
            end do
            sumold = sum
            sum = zero
            do j = 1, 9
                sum = sum + denex (j) * par (j)
            end do
            if (abs(sum) > abs(denmax)) then
                denmax = sum
                isave = i
                tempa = sumold
            else if (i == isave+1) then
                tempb = sum
            end if
        end do
        if (isave == 0) tempa = sum
        if (isave == iu) tempb = denold
        step = zero
        if (tempa /= tempb) then
            tempa = tempa - denmax
            tempb = tempb - denmax
            step = half * (tempa-tempb) / (tempa+tempb)
        end if
        angle = temp * (real(isave, wp)+step)
!
!     Calculate the new parameters of the denominator, the new VLAG vector
!     and the new D. Then test for convergence.
!
        par (2) = cos (angle)
        par (3) = sin (angle)
        do j = 4, 8, 2
            par (j) = par (2) * par (j-2) - par (3) * par (j-1)
            par (j+1) = par (2) * par (j-1) + par (3) * par (j-2)
        end do
        beta = zero
        denmax = zero
        do j = 1, 9
            beta = beta + den (j) * par (j)
            denmax = denmax + denex (j) * par (j)
        end do
        do k = 1, ndim
            vlag (k) = zero
            do j = 1, 5
                vlag (k) = vlag (k) + prod (k, j) * par (j)
            end do
        end do
        tau = vlag (knew)
        dd = zero
        tempa = zero
        tempb = zero
        do i = 1, n
            d (i) = par (2) * d (i) + par (3) * s (i)
            w (i) = xopt (i) + d (i)
            dd = dd + d (i) ** 2
            tempa = tempa + d (i) * w (i)
            tempb = tempb + w (i) * w (i)
        end do
        if (iterc >= n) go to 340
        if (iterc > 1) densav = max (densav, denold)
        if (abs(denmax) <= 1.1_wp*abs(densav)) go to 340
        densav = denmax
!
!     Set S to half the gradient of the denominator with respect to D.
!     Then branch for the next iteration.
!
        do i = 1, n
            temp = tempa * xopt (i) + tempb * d (i) - vlag (npt+i)
            s (i) = tau * bmat (knew, i) + alpha * temp
        end do
        do k = 1, npt
            sum = zero
            do j = 1, n
                sum = sum + xpt (k, j) * w (j)
            end do
            temp = (tau*w(n+k)-alpha*vlag(k)) * sum
            do i = 1, n
                s (i) = s (i) + temp * xpt (k, i)
            end do
        end do
        ss = zero
        ds = zero
        do i = 1, n
            ss = ss + s (i) ** 2
            ds = ds + d (i) * s (i)
        end do
        ssden = dd * ss - ds * ds
        if (ssden >= 1.0e-8_wp*dd*ss) go to 70
!
!     Set the vector W before the RETURN from the subroutine.
!
340     do k = 1, ndim
            w (k) = zero
            do j = 1, 5
                w (k) = w (k) + wvec (k, j) * par (j)
            end do
        end do
        vlag (kopt) = vlag (kopt) + one

    end subroutine bigden
 
    subroutine biglag (n, npt, xopt, xpt, bmat, zmat, idz, ndim, knew, delta, d, alpha, &
                       hcol, gc, gd, s, w)
                       
        implicit real (wp) (a-h, o-z)

        dimension xopt (*), xpt (npt,*), bmat (ndim,*), zmat (npt,*), d (*), hcol (*), &
                  gc(*), gd (*), s (*), w (*)
!
!     N is the number of variables.
!     NPT is the number of interpolation equations.
!     XOPT is the best interpolation point so far.
!     XPT contains the coordinates of the current interpolation points.
!     BMAT provides the last N columns of H.
!     ZMAT and IDZ give a factorization of the first NPT by NPT submatrix of H.
!     NDIM is the first dimension of BMAT and has the value NPT+N.
!     KNEW is the index of the interpolation point that is going to be moved.
!     DELTA is the current trust region bound.
!     D will be set to the step from XOPT to the new point.
!     ALPHA will be set to the KNEW-th diagonal element of the H matrix.
!     HCOL, GC, GD, S and W will be used for working space.
!
!     The step D is calculated in a way that attempts to maximize the modulus
!     of LFUNC(XOPT+D), subject to the bound ||D|| .LE. DELTA, where LFUNC is
!     the KNEW-th Lagrange function.
!
!     Set some constants.
!
        half = 0.5_wp
        one = 1.0_wp
        zero = 0.0_wp
        twopi = 8.0_wp * atan (one)
        delsq = delta * delta
        nptm = npt - n - 1
!
!     Set the first NPT components of HCOL to the leading elements of the
!     KNEW-th column of H.
!
        iterc = 0
        do k = 1, npt
            hcol (k) = zero
        end do
        do j = 1, nptm
            temp = zmat (knew, j)
            if (j < idz) temp = - temp
            do k = 1, npt
                hcol (k) = hcol (k) + temp * zmat (k, j)
            end do
        end do
        alpha = hcol (knew)
!
!     Set the unscaled initial direction D. Form the gradient of LFUNC at
!     XOPT, and multiply D by the second derivative matrix of LFUNC.
!
        dd = zero
        do i = 1, n
            d (i) = xpt (knew, i) - xopt (i)
            gc (i) = bmat (knew, i)
            gd (i) = zero
            dd = dd + d (i) ** 2
        end do
        do k = 1, npt
            temp = zero
            sum = zero
            do j = 1, n
                temp = temp + xpt (k, j) * xopt (j)
                sum = sum + xpt (k, j) * d (j)
            end do
            temp = hcol (k) * temp
            sum = hcol (k) * sum
            do i = 1, n
                gc (i) = gc (i) + temp * xpt (k, i)
                gd (i) = gd (i) + sum * xpt (k, i)
            end do
        end do
!
!     Scale D and GD, with a sign change if required. Set S to another
!     vector in the initial two dimensional subspace.
!
        gg = zero
        sp = zero
        dhd = zero
        do i = 1, n
            gg = gg + gc (i) ** 2
            sp = sp + d (i) * gc (i)
            dhd = dhd + d (i) * gd (i)
        end do
        scale = delta / sqrt (dd)
        if (sp*dhd < zero) scale = - scale
        temp = zero
        if (sp*sp > 0.99_wp*dd*gg) temp = one
        tau = scale * (abs(sp)+half*scale*abs(dhd))
        if (gg*delsq < 0.01_wp*tau*tau) temp = one
        do i = 1, n
            d (i) = scale * d (i)
            gd (i) = scale * gd (i)
            s (i) = gc (i) + temp * gd (i)
        end do
!
!     Begin the iteration by overwriting S with a vector that has the
!     required length and direction, except that termination occurs if
!     the given D and S are nearly parallel.
!
80      iterc = iterc + 1
        dd = zero
        sp = zero
        ss = zero
        do i = 1, n
            dd = dd + d (i) ** 2
            sp = sp + d (i) * s (i)
            ss = ss + s (i) ** 2
        end do
        temp = dd * ss - sp * sp
        if (temp <= 1.0e-8_wp*dd*ss) go to 160
        denom = sqrt (temp)
        do i = 1, n
            s (i) = (dd*s(i)-sp*d(i)) / denom
            w (i) = zero
        end do
!
!     Calculate the coefficients of the objective function on the circle,
!     beginning with the multiplication of S by the second derivative matrix.
!
        do k = 1, npt
            sum = zero
            do j = 1, n
                sum = sum + xpt (k, j) * s (j)
            end do
            sum = hcol (k) * sum
            do i = 1, n
                w (i) = w (i) + sum * xpt (k, i)
            end do
        end do
        cf1 = zero
        cf2 = zero
        cf3 = zero
        cf4 = zero
        cf5 = zero
        do i = 1, n
            cf1 = cf1 + s (i) * w (i)
            cf2 = cf2 + d (i) * gc (i)
            cf3 = cf3 + s (i) * gc (i)
            cf4 = cf4 + d (i) * gd (i)
            cf5 = cf5 + s (i) * gd (i)
        end do
        cf1 = half * cf1
        cf4 = half * cf4 - cf1
!
!     Seek the value of the angle that maximizes the modulus of TAU.
!
        taubeg = cf1 + cf2 + cf4
        taumax = taubeg
        tauold = taubeg
        isave = 0
        iu = 49
        temp = twopi / real (iu+1, wp)
        do i = 1, iu
            angle = real (i, wp) * temp
            cth = cos (angle)
            sth = sin (angle)
            tau = cf1 + (cf2+cf4*cth) * cth + (cf3+cf5*cth) * sth
            if (abs(tau) > abs(taumax)) then
                taumax = tau
                isave = i
                tempa = tauold
            else if (i == isave+1) then
                tempb = tau
            end if
            tauold = tau
        end do
        if (isave == 0) tempa = tau
        if (isave == iu) tempb = taubeg
        step = zero
        if (tempa /= tempb) then
            tempa = tempa - taumax
            tempb = tempb - taumax
            step = half * (tempa-tempb) / (tempa+tempb)
        end if
        angle = temp * (real(isave, wp)+step)
!
!     Calculate the new D and GD. Then test for convergence.
!
        cth = cos (angle)
        sth = sin (angle)
        tau = cf1 + (cf2+cf4*cth) * cth + (cf3+cf5*cth) * sth
        do i = 1, n
            d (i) = cth * d (i) + sth * s (i)
            gd (i) = cth * gd (i) + sth * w (i)
            s (i) = gc (i) + gd (i)
        end do
        if (abs(tau) <= 1.1_wp*abs(taubeg)) go to 160
        if (iterc < n) go to 80
160     return
    end subroutine biglag
 
    subroutine trsapp (n, npt, xopt, xpt, gq, hq, pq, delta, step, d, g, hd, hs, crvmin)
    
        implicit real (wp) (a-h, o-z)
    
        dimension xopt (*), xpt (npt,*), gq (*), hq (*), pq (*), step (*), d (*), g (*), &
                  hd (*), hs (*)
!
!     N is the number of variables of a quadratic objective function, Q say.
!     The arguments NPT, XOPT, XPT, GQ, HQ and PQ have their usual meanings,
!       in order to define the current quadratic model Q.
!     DELTA is the trust region radius, and has to be positive.
!     STEP will be set to the calculated trial step.
!     The arrays D, G, HD and HS will be used for working space.
!     CRVMIN will be set to the least curvature of H along the conjugate
!       directions that occur, except that it is set to zero if STEP goes
!       all the way to the trust region boundary.
!
!     The calculation of STEP begins with the truncated conjugate gradient
!     method. If the boundary of the trust region is reached, then further
!     changes to STEP may be made, each one being in the 2D space spanned
!     by the current STEP and the corresponding gradient of Q. Thus STEP
!     should provide a substantial reduction to Q within the trust region.
!
!     Initialization, which includes setting HD to H times XOPT.
!
        half = 0.5_wp
        zero = 0.0_wp
        twopi = 8.0_wp * atan (1.0_wp)
        delsq = delta * delta
        iterc = 0
        itermax = n
        itersw = itermax
        do i = 1, n
            d (i) = xopt (i)
        end do
        go to 170
!
!     Prepare for the first line search.
!
20      qred = zero
        dd = zero
        do i = 1, n
            step (i) = zero
            hs (i) = zero
            g (i) = gq (i) + hd (i)
            d (i) = - g (i)
            dd = dd + d (i) ** 2
        end do
        crvmin = zero
        if (dd == zero) go to 160
        ds = zero
        ss = zero
        gg = dd
        ggbeg = gg
!
!     Calculate the step to the trust region boundary and the product HD.
!
40      iterc = iterc + 1
        temp = delsq - ss
        bstep = temp / (ds+sqrt(ds*ds+dd*temp))
        go to 170
50      dhd = zero
        do j = 1, n
            dhd = dhd + d (j) * hd (j)
        end do
!
!     Update CRVMIN and set the step-length ALPHA.
!
        alpha = bstep
        if (dhd > zero) then
            temp = dhd / dd
            if (iterc == 1) crvmin = temp
            crvmin = min (crvmin, temp)
            alpha = min (alpha, gg/dhd)
        end if
        qadd = alpha * (gg-half*alpha*dhd)
        qred = qred + qadd
!
!     Update STEP and HS.
!
        ggsav = gg
        gg = zero
        do i = 1, n
            step (i) = step (i) + alpha * d (i)
            hs (i) = hs (i) + alpha * hd (i)
            gg = gg + (g(i)+hs(i)) ** 2
        end do
!
!     Begin another conjugate direction iteration if required.
!
        if (alpha < bstep) then
            if (qadd <= 0.01_wp*qred) go to 160
            if (gg <= 1.0e-4_wp*ggbeg) go to 160
            if (iterc == itermax) go to 160
            temp = gg / ggsav
            dd = zero
            ds = zero
            ss = zero
            do i = 1, n
                d (i) = temp * d (i) - g (i) - hs (i)
                dd = dd + d (i) ** 2
                ds = ds + d (i) * step (i)
                ss = ss + step (i) ** 2
            end do
            if (ds <= zero) go to 160
            if (ss < delsq) go to 40
        end if
        crvmin = zero
        itersw = iterc
!
!     Test whether an alternative iteration is required.
!
90      if (gg <= 1.0e-4_wp*ggbeg) go to 160
        sg = zero
        shs = zero
        do i = 1, n
            sg = sg + step (i) * g (i)
            shs = shs + step (i) * hs (i)
        end do
        sgk = sg + shs
        angtest = sgk / sqrt (gg*delsq)
        if (angtest <=-0.99_wp) go to 160
!
!     Begin the alternative iteration by calculating D and HD and some
!     scalar products.
!
        iterc = iterc + 1
        temp = sqrt (delsq*gg-sgk*sgk)
        tempa = delsq / temp
        tempb = sgk / temp
        do i = 1, n
            d (i) = tempa * (g(i)+hs(i)) - tempb * step (i)
        end do
        go to 170
120     dg = zero
        dhd = zero
        dhs = zero
        do i = 1, n
            dg = dg + d (i) * g (i)
            dhd = dhd + hd (i) * d (i)
            dhs = dhs + hd (i) * step (i)
        end do
!
!     Seek the value of the angle that minimizes Q.
!
        cf = half * (shs-dhd)
        qbeg = sg + cf
        qsav = qbeg
        qmin = qbeg
        isave = 0
        iu = 49
        temp = twopi / real (iu+1, wp)
        do i = 1, iu
            angle = real (i, wp) * temp
            cth = cos (angle)
            sth = sin (angle)
            qnew = (sg+cf*cth) * cth + (dg+dhs*cth) * sth
            if (qnew < qmin) then
                qmin = qnew
                isave = i
                tempa = qsav
            else if (i == isave+1) then
                tempb = qnew
            end if
            qsav = qnew
        end do
        if (isave == zero) tempa = qnew
        if (isave == iu) tempb = qbeg
        angle = zero
        if (tempa /= tempb) then
            tempa = tempa - qmin
            tempb = tempb - qmin
            angle = half * (tempa-tempb) / (tempa+tempb)
        end if
        angle = temp * (real(isave, wp)+angle)
!
!     Calculate the new STEP and HS. Then test for convergence.
!
        cth = cos (angle)
        sth = sin (angle)
        reduc = qbeg - (sg+cf*cth) * cth - (dg+dhs*cth) * sth
        gg = zero
        do i = 1, n
            step (i) = cth * step (i) + sth * d (i)
            hs (i) = cth * hs (i) + sth * hd (i)
            gg = gg + (g(i)+hs(i)) ** 2
        end do
        qred = qred + reduc
        ratio = reduc / qred
        if (iterc < itermax .and. ratio > 0.01_wp) go to 90
160     return
!
!     The following instructions act as a subroutine for setting the vector
!     HD to the vector D multiplied by the second derivative matrix of Q.
!     They are called from three different places, which are distinguished
!     by the value of ITERC.
!
170     do i = 1, n
            hd (i) = zero
        end do
        do k = 1, npt
            temp = zero
            do j = 1, n
                temp = temp + xpt (k, j) * d (j)
            end do
            temp = temp * pq (k)
            do i = 1, n
                hd (i) = hd (i) + temp * xpt (k, i)
            end do
        end do
        ih = 0
        do j = 1, n
            do i = 1, j
                ih = ih + 1
                if (i < j) hd (j) = hd (j) + hq (ih) * d (i)
                hd (i) = hd (i) + hq (ih) * d (j)
            end do
        end do
        if (iterc == 0) go to 20
        if (iterc <= itersw) go to 50
        go to 120
    end subroutine trsapp
 
    subroutine update (n, npt, bmat, zmat, idz, ndim, vlag, beta, knew, w)
    
        implicit real (wp) (a-h, o-z)
    
        dimension bmat (ndim,*), zmat (npt,*), vlag (*), w (*)
!
!     The arrays BMAT and ZMAT with IDZ are updated, in order to shift the
!     interpolation point that has index KNEW. On entry, VLAG contains the
!     components of the vector Theta*Wcheck+e_b of the updating formula
!     (6.11), and BETA holds the value of the parameter that has this name.
!     The vector W is used for working space.
!
!     Set some constants.
!
        one = 1.0_wp
        zero = 0.0_wp
        nptm = npt - n - 1
!
!     Apply the rotations that put zeros in the KNEW-th row of ZMAT.
!
        jl = 1
        do j = 2, nptm
            if (j == idz) then
                jl = idz
            else if (zmat(knew, j) /= zero) then
                temp = sqrt (zmat(knew, jl)**2+zmat(knew, j)**2)
                tempa = zmat (knew, jl) / temp
                tempb = zmat (knew, j) / temp
                do i = 1, npt
                    temp = tempa * zmat (i, jl) + tempb * zmat (i, j)
                    zmat (i, j) = tempa * zmat (i, j) - tempb * zmat (i, jl)
                    zmat (i, jl) = temp
                end do
                zmat (knew, j) = zero
            end if
        end do
!
!     Put the first NPT components of the KNEW-th column of HLAG into W,
!     and calculate the parameters of the updating formula.
!
        tempa = zmat (knew, 1)
        if (idz >= 2) tempa = - tempa
        if (jl > 1) tempb = zmat (knew, jl)
        do i = 1, npt
            w (i) = tempa * zmat (i, 1)
            if (jl > 1) w (i) = w (i) + tempb * zmat (i, jl)
        end do
        alpha = w (knew)
        tau = vlag (knew)
        tausq = tau * tau
        denom = alpha * beta + tausq
        vlag (knew) = vlag (knew) - one
!
!     Complete the updating of ZMAT when there is only one nonzero element
!     in the KNEW-th row of the new matrix ZMAT, but, if IFLAG is set to one,
!     then the first column of ZMAT will be exchanged with another one later.
!
        iflag = 0
        if (jl == 1) then
            temp = sqrt (abs(denom))
            tempb = tempa / temp
            tempa = tau / temp
            do i = 1, npt
                zmat (i, 1) = tempa * zmat (i, 1) - tempb * vlag (i)
            end do
            if (idz == 1 .and. temp < zero) idz = 2
            if (idz >= 2 .and. temp >= zero) iflag = 1
        else
!
!     Complete the updating of ZMAT in the alternative case.
!
            ja = 1
            if (beta >= zero) ja = jl
            jb = jl + 1 - ja
            temp = zmat (knew, jb) / denom
            tempa = temp * beta
            tempb = temp * tau
            temp = zmat (knew, ja)
            scala = one / sqrt (abs(beta)*temp*temp+tausq)
            scalb = scala * sqrt (abs(denom))
            do i = 1, npt
                zmat (i, ja) = scala * (tau*zmat(i, ja)-temp*vlag(i))
                zmat (i, jb) = scalb * (zmat(i, jb)-tempa*w(i)-tempb*vlag(i))
            end do
            if (denom <= zero) then
                if (beta < zero) idz = idz + 1
                if (beta >= zero) iflag = 1
            end if
        end if
!
!     IDZ is reduced in the following case, and usually the first column
!     of ZMAT is exchanged with a later one.
!
        if (iflag == 1) then
            idz = idz - 1
            do i = 1, npt
                temp = zmat (i, 1)
                zmat (i, 1) = zmat (i, idz)
                zmat (i, idz) = temp
            end do
        end if
!
!     Finally, update the matrix BMAT.
!
        do j = 1, n
            jp = npt + j
            w (jp) = bmat (knew, j)
            tempa = (alpha*vlag(jp)-tau*w(jp)) / denom
            tempb = (-beta*w(jp)-tau*vlag(jp)) / denom
            do i = 1, jp
                bmat (i, j) = bmat (i, j) + tempa * vlag (i) + tempb * w (i)
                if (i > npt) bmat (jp, i-npt) = bmat (i, j)
            end do
        end do

    end subroutine update
 
!*****************************************************************************************
!>
!  The Chebyquad test problem (Fletcher, 1965) for N = 2,4,6 and 8,
!  with NPT = 2N+1.

    subroutine newuoa_test ()

        implicit none
        
        real(wp) :: x (10)
        integer :: iprint,maxfun,n,npt,i
        real(wp) :: rhoend,rhobeg
        
        iprint = 2
        maxfun = 5000
        rhoend = 1.0e-6_wp
        do n = 2, 8, 2
            npt = 2 * n + 1
            do i = 1, n
                x (i) = real (i, wp) / real (n+1, wp)
            end do
            rhobeg = 0.2_wp * x (1)
            print 20, n, npt
20          format (/ / 4 x, 'Results with N =', i2, ' and NPT =', i3)
            call newuoa (n, npt, x, rhobeg, rhoend, iprint, maxfun, calfun)
        end do
 
    contains
 
        subroutine calfun (n, x, f)
        
            implicit none
            
            integer :: n
            real (wp) :: x (*)
            real (wp) :: f
            
            real(wp) :: y (10, 10)
            integer :: i,j,np,iw
            real(wp) :: sum
            
            do j = 1, n
                y (1, j) = 1.0_wp
                y (2, j) = 2.0_wp * x (j) - 1.0_wp
            end do
            do i = 2, n
                do j = 1, n
                    y (i+1, j) = 2.0_wp * y (2, j) * y (i, j) - y (i-1, j)
                end do
            end do
            f = 0.0_wp
            np = n + 1
            iw = 1
            do i = 1, np
                sum = 0.0_wp
                do j = 1, n
                    sum = sum + y (i, j)
                end do
                sum = sum / real (n, wp)
                if (iw > 0) sum = sum + 1.0_wp / real (i*i-2*i, wp)
                iw = - iw
                f = f + sum * sum
            end do
        end subroutine calfun
 
    end subroutine newuoa_test
!*****************************************************************************************
 
end module newuoa_module