!******************************************************************************* !> license: BSD ! ! BLAS support routines for DVODE. ! These have been refactored into modern Fortran. module dvode_blas_module #ifndef HAS_BLAS use dvode_kinds_module, only: wp => dvode_wp implicit none private real(wp),parameter :: zero = 0.0_wp real(wp),parameter :: one = 1.0_wp real(wp),parameter :: two = 2.0_wp real(wp),parameter :: four = 4.0_wp real(wp),parameter :: ten = 10.0_wp real(wp),parameter :: hun = 100.0_wp public :: daxpy,dcopy,ddot,dnrm2,dscal,idamax contains !******************************************************************************* !******************************************************************************* !> ! constant times a vector plus a vector. ! uses unrolled loops for increments equal to one. ! !### Author ! jack dongarra, linpack, 3/11/78. subroutine daxpy(n,da,dx,incx,dy,incy) implicit none integer,intent(in) :: n real(wp),intent(in) :: da real(wp),intent(in) :: dx(*) integer,intent(in) :: incx real(wp),intent(inout) :: dy(*) integer,intent(in) :: incy integer :: i , ix , iy , m , mp1 if ( n<=0 ) return if ( da==zero ) return if ( incx==1 .and. incy==1 ) then ! code for both increments equal to 1 ! clean-up loop m = mod(n,4) if ( m/=0 ) then do i = 1 , m dy(i) = dy(i) + da*dx(i) end do if ( n<4 ) return end if mp1 = m + 1 do i = mp1 , n , 4 dy(i) = dy(i) + da*dx(i) dy(i+1) = dy(i+1) + da*dx(i+1) dy(i+2) = dy(i+2) + da*dx(i+2) dy(i+3) = dy(i+3) + da*dx(i+3) end do else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if ( incx<0 ) ix = (-n+1)*incx + 1 if ( incy<0 ) iy = (-n+1)*incy + 1 do i = 1 , n dy(iy) = dy(iy) + da*dx(ix) ix = ix + incx iy = iy + incy end do end if end subroutine daxpy !******************************************************************************* !******************************************************************************* !> ! copies a vector, x, to a vector, y. ! uses unrolled loops for increments equal to one. ! !### Author ! jack dongarra, linpack, 3/11/78. subroutine dcopy(n,dx,incx,dy,incy) implicit none integer,intent(in) :: n real(wp),intent(in) :: dx(*) integer,intent(in) :: incx real(wp),intent(inout) :: dy(*) integer,intent(in) :: incy integer :: i , ix , iy , m , mp1 if ( n<=0 ) return if ( incx==1 .and. incy==1 ) then ! code for both increments equal to 1 ! clean-up loop m = mod(n,7) if ( m/=0 ) then do i = 1 , m dy(i) = dx(i) end do if ( n<7 ) return end if mp1 = m + 1 do i = mp1 , n , 7 dy(i) = dx(i) dy(i+1) = dx(i+1) dy(i+2) = dx(i+2) dy(i+3) = dx(i+3) dy(i+4) = dx(i+4) dy(i+5) = dx(i+5) dy(i+6) = dx(i+6) end do else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if ( incx<0 ) ix = (-n+1)*incx + 1 if ( incy<0 ) iy = (-n+1)*incy + 1 do i = 1 , n dy(iy) = dx(ix) ix = ix + incx iy = iy + incy end do end if end subroutine dcopy !******************************************************************************* !******************************************************************************* !> ! forms the dot product of two vectors. ! uses unrolled loops for increments equal to one. ! !### Author ! jack dongarra, linpack, 3/11/78. real(wp) function ddot(n,dx,incx,dy,incy) implicit none integer,intent(in) :: n real(wp),intent(in) :: dx(*) integer,intent(in) :: incx real(wp),intent(in) :: dy(*) integer,intent(in) :: incy real(wp) :: dtemp integer :: i , ix , iy , m , mp1 ddot = zero dtemp = zero if ( n<=0 ) return if ( incx==1 .and. incy==1 ) then ! code for both increments equal to 1 ! clean-up loop m = mod(n,5) if ( m/=0 ) then do i = 1 , m dtemp = dtemp + dx(i)*dy(i) end do if ( n<5 ) then ddot = dtemp return end if end if mp1 = m + 1 do i = mp1 , n , 5 dtemp = dtemp + dx(i)*dy(i) + dx(i+1)*dy(i+1) + & dx(i+2)*dy(i+2) + dx(i+3)*dy(i+3) + dx(i+4)*dy(i+4) end do ddot = dtemp else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if ( incx<0 ) ix = (-n+1)*incx + 1 if ( incy<0 ) iy = (-n+1)*incy + 1 do i = 1 , n dtemp = dtemp + dx(ix)*dy(iy) ix = ix + incx iy = iy + incy end do ddot = dtemp end if end function ddot !******************************************************************************* !******************************************************************************* !> ! Function that returns the Euclidean norm ! \( \sqrt{ \mathbf{x}^T \mathbf{x} } \) of a vector \( \mathbf{x} \). ! !### Further details ! ! * this version written on 25-october-1982. ! * modified on 14-october-1993 to inline the call to dlassq. ! sven hammarling, nag ltd. ! * Converted to modern Fortran, Jacob Williams, Jan. 2016. ! !@note Replaced original SLSQP routine with this one from ! [BLAS](http://netlib.sandia.gov/blas/dnrm2.f). real(wp) function dnrm2(n,x,incx) implicit none integer,intent(in) :: incx integer,intent(in) :: n real(wp),dimension(*),intent(in) :: x real(wp) :: absxi , norm , scale , ssq integer :: ix if ( n<1 .or. incx<1 ) then norm = zero else if ( n==1 ) then norm = abs(x(1)) else scale = zero ssq = one ! the following loop is equivalent to this call to the lapack ! auxiliary routine: ! call dlassq( n, x, incx, scale, ssq ) do ix = 1 , 1 + (n-1)*incx , incx if ( x(ix)/=zero ) then absxi = abs(x(ix)) if ( scale<absxi ) then ssq = one + ssq*(scale/absxi)**2 scale = absxi else ssq = ssq + (absxi/scale)**2 end if end if end do norm = scale*sqrt(ssq) end if dnrm2 = norm end function dnrm2 !******************************************************************************* !******************************************************************************* !> ! scales a vector by a constant. ! uses unrolled loops for increment equal to one. ! !### Author ! jack dongarra, linpack, 3/11/78. subroutine dscal(n,da,dx,incx) implicit none integer,intent(in) :: n real(wp),intent(in) :: da real(wp),intent(inout) :: dx(*) integer,intent(in) :: incx integer :: i , m , mp1 , nincx if ( n<=0 .or. incx<=0 ) return if ( incx==1 ) then ! code for increment equal to 1 ! clean-up loop m = mod(n,5) if ( m/=0 ) then do i = 1 , m dx(i) = da*dx(i) end do if ( n<5 ) return end if mp1 = m + 1 do i = mp1 , n , 5 dx(i) = da*dx(i) dx(i+1) = da*dx(i+1) dx(i+2) = da*dx(i+2) dx(i+3) = da*dx(i+3) dx(i+4) = da*dx(i+4) end do else ! code for increment not equal to 1 nincx = n*incx do i = 1 , nincx , incx dx(i) = da*dx(i) end do end if end subroutine dscal !******************************************************************************* !******************************************************************************* !> ! Find the smallest index of that component of a vector ! having the maximum magnitude. ! !### Description ! Find smallest index of maximum magnitude of double precision DX. ! IDAMAX = first I, I = 1 to N, to maximize ABS(DX(IX+(I-1)*INCX)), ! where IX = 1 if INCX >= 0, else IX = 1+(1-N)*INCX. ! !### Authors ! * Lawson, C. L., (JPL) ! * Hanson, R. J., (SNLA) ! * Kincaid, D. R., (U. of Texas) ! * Krogh, F. T., (JPL) ! !### Reference ! * C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. ! Krogh, Basic linear algebra subprograms for Fortran ! usage, Algorithm No. 539, Transactions on Mathematical ! Software 5, 3 (September 1979), pp. 308-323. ! !### History ! * 791001 DATE WRITTEN ! * 890531 Changed all specific intrinsics to generic. (WRB) ! * 890531 REVISION DATE from Version 3.2 ! * 891214 Prologue converted to Version 4.0 format. (BAB) ! * 900821 Modified to correct problem with a negative increment. (WRB) ! * 920501 Reformatted the REFERENCES section. (WRB) ! * Jacob Williams, 2/21/2016, converted to modern Fortran. integer function idamax(n,dx,incx) implicit none integer,intent(in) :: n !! number of elements in input vector(s) real(wp),dimension(*),intent(in) :: dx !! double precision vector with `N` elements integer,intent(in) :: incx !! storage spacing between elements of `DX` real(wp) :: dmax, xmag integer :: i, ix idamax = 0 if ( n<=0 ) return idamax = 1 if ( n==1 ) return if ( incx==1 ) then ! code for increments equal to 1. dmax = abs(dx(1)) do i = 2 , n xmag = abs(dx(i)) if ( xmag>dmax ) then idamax = i dmax = xmag endif enddo else ! code for increments not equal to 1. ix = 1 if ( incx<0 ) ix = (-n+1)*incx + 1 dmax = abs(dx(ix)) ix = ix + incx do i = 2 , n xmag = abs(dx(ix)) if ( xmag>dmax ) then idamax = i dmax = xmag endif ix = ix + incx enddo end if end function idamax !******************************************************************************* #endif !******************************************************************************* end module dvode_blas_module !*******************************************************************************