!----------------------------------------------------------------------------------------------------------------------------------! !()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()! !----------------------------------------------------------------------------------------------------------------------------------! !> !!### NAME !! dcfode(3f) - [M_odepack] Set ODE integrator coefficients. !! !!### SYNOPSIS !! subroutine dcfode (meth, elco, tesco) !! integer :: meth !! double precision :: elco(13,12) !! double precision :: tesco(3,12) !! !!### DESCRIPTION !! DCFODE is called by the integrator routine to set coefficients !! needed there. !! !! DCFODE is called once at the beginning of the problem, !! and is not called again unless and until METH is changed. !! !!### OPTIONS !! !! METH !! !! : The coefficients for the current method, as !! given by the value of METH, are set for all orders and saved. !! The maximum order assumed here is 12 if METH = 1 and 5 if METH = 2. !! (A smaller value of the maximum order is also allowed.) !! !! ELCO !! !! : The ELCO array contains the basic method coefficients. !! The coefficients el(i), 1 .le. i .le. nq+1, for the method of !! order nq are stored in ELCO(i,nq). They are given by a genetrating !! polynomial, i.e., !! l(x) = el(1) + el(2)*x + ... + el(nq+1)*x**nq. !! For the implicit Adams methods, l(x) is given by !! dl/dx = (x+1)*(x+2)*...*(x+nq-1)/factorial(nq-1), l(-1) = 0. !! For the BDF methods, l(x) is given by !! l(x) = (x+1)*(x+2)* ... *(x+nq)/K, !! where !! K = factorial(nq)*(1 + 1/2 + ... + 1/nq). !! !! TESCO !! !! : The TESCO array contains test constants used for the !! local error test and the selection of step size and/or order. !! At order nq, TESCO(k,nq) is used for the selection of step !! size at order nq - 1 if k = 1, at order nq if k = 2, and at order !! nq + 1 if k = 3. !! ! ### BEGIN PROLOGUE DCFODE ! ### SUBSIDIARY ! ### PURPOSE Set ODE integrator coefficients. ! ### TYPE DOUBLE PRECISION (SCFODE-S, DCFODE-D) ! ### AUTHOR Hindmarsh, Alan C., (LLNL) ! ### DESCRIPTION ! ### SEE ALSO DLSODE ! ### ROUTINES CALLED (NONE) ! ### REVISION HISTORY (YYMMDD) ! 791129 DATE WRITTEN ! 890501 Modified prologue to SLATEC/LDOC format. (FNF) ! 890503 Minor cosmetic changes. (FNF) ! 930809 Renamed to allow single/double precision versions. (ACH) ! ### END PROLOGUE DCFODE !----------------------------------------------------------------------- subroutine dcfode (meth, elco, tesco) integer,intent(in) :: meth real(kind=dp),intent(inout) :: elco(13,12) real(kind=dp),intent(out) :: tesco(3,12) integer :: i, ib, nq, nqm1, nqp1 double precision :: agamq, fnq, fnqm1, pc(12), pint, ragq, rqfac, rq1fac, tsign, xpin select case(meth) case(1) elco(1,1) = 1.0d0 elco(2,1) = 1.0d0 tesco(1,1) = 0.0d0 tesco(2,1) = 2.0d0 tesco(1,2) = 1.0d0 tesco(3,12) = 0.0d0 pc(1) = 1.0d0 rqfac = 1.0d0 do nq = 2,12 !----------------------------------------------------------------------- ! The PC array will contain the coefficients of the polynomial ! p(x) = (x+1)*(x+2)*...*(x+nq-1). ! Initially, p(x) = 1. !----------------------------------------------------------------------- rq1fac = rqfac rqfac = rqfac/nq nqm1 = nq - 1 fnqm1 = nqm1 nqp1 = nq + 1 ! Form coefficients of p(x)*(x+nq-1). ---------------------------------- pc(nq) = 0.0d0 do ib = 1,nqm1 i = nqp1 - ib pc(i) = pc(i-1) + fnqm1*pc(i) enddo pc(1) = fnqm1*pc(1) ! Compute integral, -1 to 0, of p(x) and x*p(x). ----------------------- pint = pc(1) xpin = pc(1)/2.0d0 tsign = 1.0d0 do i = 2,nq tsign = -tsign pint = pint + tsign*pc(i)/i xpin = xpin + tsign*pc(i)/(i+1) enddo ! Store coefficients in ELCO and TESCO. -------------------------------- elco(1,nq) = pint*rq1fac elco(2,nq) = 1.0d0 do i = 2,nq elco(i+1,nq) = rq1fac*pc(i)/i enddo agamq = rqfac*xpin ragq = 1.0d0/agamq tesco(2,nq) = ragq if (nq .lt. 12) tesco(1,nqp1) = ragq*rqfac/nqp1 tesco(3,nqm1) = ragq enddo case(2) pc(1) = 1.0d0 rq1fac = 1.0d0 do nq = 1,5 !----------------------------------------------------------------------- ! The PC array will contain the coefficients of the polynomial ! p(x) = (x+1)*(x+2)*...*(x+nq). ! Initially, p(x) = 1. !----------------------------------------------------------------------- fnq = nq nqp1 = nq + 1 ! Form coefficients of p(x)*(x+nq). ------------------------------------ pc(nqp1) = 0.0d0 do ib = 1,nq i = nq + 2 - ib pc(i) = pc(i-1) + fnq*pc(i) enddo pc(1) = fnq*pc(1) ! Store coefficients in ELCO and TESCO. -------------------------------- do i = 1,nqp1 elco(i,nq) = pc(i)/pc(2) enddo elco(2,nq) = 1.0d0 tesco(1,nq) = rq1fac tesco(2,nq) = nqp1/elco(1,nq) tesco(3,nq) = (nq+2)/elco(1,nq) rq1fac = rq1fac/fnq enddo case default stop '*dcfode* unknown value for meth' end select end subroutine dcfode