same as dqags but provides more information and control
the routine calculates an approximation result to a given
definite integral i = integral of f
over (a,b)
,
hopefully satisfying following claim for accuracy
abs(i-result)<=max(epsabs,epsrel*abs(i))
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
procedure(func) | :: | f |
function subprogram defining the integrand
function |
|||
real(kind=wp), | intent(in) | :: | a |
lower limit of integration |
||
real(kind=wp), | intent(in) | :: | b |
upper limit of integration |
||
real(kind=wp), | intent(in) | :: | Epsabs |
absolute accuracy requested |
||
real(kind=wp), | intent(in) | :: | Epsrel |
relative accuracy requested
if |
||
integer, | intent(in) | :: | Limit |
gives an upperbound on the number of subintervals
in the partition of |
||
real(kind=wp), | intent(out) | :: | Result |
approximation to the integral |
||
real(kind=wp), | intent(out) | :: | Abserr |
estimate of the modulus of the absolute error,
which should equal or exceed |
||
integer, | intent(out) | :: | Neval |
number of integrand evaluations |
||
integer, | intent(out) | :: | Ier |
error messages:
* ier = 1 maximum number of subdivisions allowed
has been achieved. one can allow more sub-
divisions by increasing the value of limit
(and taking the according dimension
adjustments into account). however, if
this yields no improvement it is advised
to analyze the integrand in order to
determine the integration difficulties. if
the position of a local difficulty can be
determined (e.g. singularity,
discontinuity within the interval) one
will probably gain from splitting up the
interval at this point and calling the
integrator on the subranges. if possible,
an appropriate special-purpose integrator
should be used, which is designed for
handling the type of difficulty involved.
* ier = 2 the occurrence of roundoff error is
detected, which prevents the requested
tolerance from being achieved.
the error may be under-estimated.
* ier = 3 extremely bad integrand behaviour
occurs at some points of the integration
interval.
* ier = 4 the algorithm does not converge.
roundoff error is detected in the
extrapolation table.
it is presumed that the requested
tolerance cannot be achieved, and that the
returned result is the best which can be
obtained.
* ier = 5 the integral is probably divergent, or
slowly convergent. it must be noted that
divergence can occur with any other value
of ier.
* ier = 6 the input is invalid, because
|
||
real(kind=wp), | intent(out) | :: | Alist(Limit) |
vector of dimension at least |
||
real(kind=wp), | intent(out) | :: | Blist(Limit) |
vector of dimension at least |
||
real(kind=wp), | intent(out) | :: | Rlist(Limit) |
vector of dimension at least |
||
real(kind=wp), | intent(out) | :: | Elist(Limit) |
vector of dimension at least |
||
integer, | intent(out) | :: | Iord(Limit) |
vector of dimension at least |
||
integer, | intent(out) | :: | Last |
number of subintervals actually produced in the subdivision process |
subroutine dqagse(f, a, b, Epsabs, Epsrel, Limit, Result, Abserr, Neval, & Ier, Alist, Blist, Rlist, Elist, Iord, Last) implicit none procedure(func) :: f !! function subprogram defining the integrand !! function `f(x)`. real(wp), intent(in) :: a !! lower limit of integration real(wp), intent(in) :: b !! upper limit of integration real(wp), intent(in) :: Epsabs !! absolute accuracy requested real(wp), intent(in) :: Epsrel !! relative accuracy requested !! if `epsabs<=0` !! and `epsrel<max(50*rel.mach.acc.,0.5e-28)`, !! the routine will end with ier = 6. integer, intent(in) :: Limit !! gives an upperbound on the number of subintervals !! in the partition of `(a,b)` real(wp), intent(out) :: Result !! approximation to the integral integer, intent(out) :: Neval !! number of integrand evaluations real(wp), intent(out) :: Abserr !! estimate of the modulus of the absolute error, !! which should equal or exceed `abs(i-result)` real(wp), intent(out) :: Alist(Limit) !! vector of dimension at least `limit`, the first !! `last` elements of which are the left end points !! of the subintervals in the partition of the !! given integration range (a,b) real(wp), intent(out) :: Blist(Limit) !! vector of dimension at least `limit`, the first !! `last` elements of which are the right end points !! of the subintervals in the partition of the given !! integration range (a,b) real(wp), intent(out) :: Elist(Limit) !! vector of dimension at least `limit`, the first !! `last` elements of which are the moduli of the !! absolute error estimates on the subintervals real(wp), intent(out) :: Rlist(Limit) !! vector of dimension at least `limit`, the first !! `last` elements of which are the integral !! approximations on the subintervals integer, intent(out) :: Ier !! * ier = 0 normal and reliable termination of the !! routine. it is assumed that the requested !! accuracy has been achieved. !! * ier>0 abnormal termination of the routine !! the estimates for integral and error are !! less reliable. it is assumed that the !! requested accuracy has not been achieved. !! !! error messages: !! * ier = 1 maximum number of subdivisions allowed !! has been achieved. one can allow more sub- !! divisions by increasing the value of limit !! (and taking the according dimension !! adjustments into account). however, if !! this yields no improvement it is advised !! to analyze the integrand in order to !! determine the integration difficulties. if !! the position of a local difficulty can be !! determined (e.g. singularity, !! discontinuity within the interval) one !! will probably gain from splitting up the !! interval at this point and calling the !! integrator on the subranges. if possible, !! an appropriate special-purpose integrator !! should be used, which is designed for !! handling the type of difficulty involved. !! * ier = 2 the occurrence of roundoff error is !! detected, which prevents the requested !! tolerance from being achieved. !! the error may be under-estimated. !! * ier = 3 extremely bad integrand behaviour !! occurs at some points of the integration !! interval. !! * ier = 4 the algorithm does not converge. !! roundoff error is detected in the !! extrapolation table. !! it is presumed that the requested !! tolerance cannot be achieved, and that the !! returned result is the best which can be !! obtained. !! * ier = 5 the integral is probably divergent, or !! slowly convergent. it must be noted that !! divergence can occur with any other value !! of ier. !! * ier = 6 the input is invalid, because !! `epsabs<=0` and !! `epsrel<max(50*rel.mach.acc.,0.5e-28)`. !! `result`, `abserr`, `neval`, `last`, `rlist(1)`, !! `iord(1)` and `elist(1)` are set to zero. !! `alist(1)` and `blist(1)` are set to a and b !! respectively. integer, intent(out) :: Iord(Limit) !! vector of dimension at least `limit`, the first `k` !! elements of which are pointers to the !! error estimates over the subintervals, !! such that `elist(iord(1)), ..., elist(iord(k))` !! form a decreasing sequence, with `k = last` !! if `last<=(limit/2+2)`, and `k = limit+1-last` !! otherwise integer, intent(out) :: Last !! number of subintervals actually produced in the !! subdivision process real(wp) :: abseps, correc, defabs, dres, & ertest, resabs, reseps, res3la(3) integer :: id, ierro, iroff1, iroff2, iroff3, & jupbnd, k, ksgn, ktmin, nrmax real(wp) :: area12 !! `area1 + area2` real(wp) :: erro12 !! `error1 + error2` real(wp) :: area1, a1, b1, defab1, error1 !! variable for the left interval real(wp) :: area2, a2, b2, defab2, error2 !! variable for the right interval real(wp) :: rlist2(limexp + 2) !! array of dimension at least `limexp+2` containing !! the part of the epsilon table which is still !! needed for further computations. integer :: maxerr !! pointer to the interval with largest error estimate integer :: nres !! number of calls to the extrapolation routine integer :: numrl2 !! number of elements currently in `rlist2`. if an !! appropriate approximation to the compounded !! integral has been obtained it is put in !! `rlist2(numrl2)` after `numrl2` has been increased !! by one. real(wp) :: errmax !! elist(maxerr) real(wp) :: erlast !! error on the interval currently subdivided !! (before that subdivision has taken place) real(wp) :: area !! sum of the integrals over the subintervals real(wp) :: errsum !! sum of the errors over the subintervals real(wp) :: errbnd !! requested accuracy `max(epsabs,epsrel*abs(result))` real(wp) :: small !! length of the smallest interval considered up !! to now, multiplied by 1.5 real(wp) :: erlarg !! sum of the errors over the intervals larger !! than the smallest interval considered up to now logical :: extrap !! logical variable denoting that the routine is !! attempting to perform extrapolation i.e. before !! subdividing the smallest interval we try to !! decrease the value of `erlarg`. logical :: noext !! logical variable denoting that extrapolation !! is no longer allowed (true value) ! test on validity of parameters Ier = 0 Neval = 0 Last = 0 Result = 0.0_wp Abserr = 0.0_wp Alist(1) = a Blist(1) = b Rlist(1) = 0.0_wp Elist(1) = 0.0_wp if (Epsabs <= 0.0_wp .and. Epsrel < max(50.0_wp*epmach, 0.5e-28_wp)) Ier = 6 if (Ier == 6) return main : block ! first approximation to the integral ierro = 0 call dqk21(f, a, b, Result, Abserr, defabs, resabs) ! test on accuracy. dres = abs(Result) errbnd = max(Epsabs, Epsrel*dres) Last = 1 Rlist(1) = Result Elist(1) = Abserr Iord(1) = 1 if (Abserr <= 100.0_wp*epmach*defabs .and. Abserr > errbnd) & Ier = 2 if (Limit == 1) Ier = 1 if (Ier /= 0 .or. (Abserr <= errbnd .and. Abserr /= resabs) .or. & Abserr == 0.0_wp) then Neval = 42*Last - 21 return end if ! initialization rlist2(1) = Result errmax = Abserr maxerr = 1 area = Result errsum = Abserr Abserr = oflow nrmax = 1 nres = 0 numrl2 = 2 ktmin = 0 extrap = .false. noext = .false. iroff1 = 0 iroff2 = 0 iroff3 = 0 ksgn = -1 if (dres >= (1.0_wp - 50.0_wp*epmach)*defabs) ksgn = 1 ! main do-loop loop: do Last = 2, Limit ! bisect the subinterval with the nrmax-th largest error ! estimate. a1 = Alist(maxerr) b1 = 0.5_wp*(Alist(maxerr) + Blist(maxerr)) a2 = b1 b2 = Blist(maxerr) erlast = errmax call dqk21(f, a1, b1, area1, error1, resabs, defab1) call dqk21(f, a2, b2, area2, error2, resabs, defab2) ! improve previous approximations to integral ! and error and test for accuracy. area12 = area1 + area2 erro12 = error1 + error2 errsum = errsum + erro12 - errmax area = area + area12 - Rlist(maxerr) if (defab1 /= error1 .and. defab2 /= error2) then if (abs(Rlist(maxerr) - area12) <= 0.1e-4_wp*abs(area12) & .and. erro12 >= 0.99_wp*errmax) then if (extrap) iroff2 = iroff2 + 1 if (.not. extrap) iroff1 = iroff1 + 1 end if if (Last > 10 .and. erro12 > errmax) iroff3 = iroff3 + 1 end if Rlist(maxerr) = area1 Rlist(Last) = area2 errbnd = max(Epsabs, Epsrel*abs(area)) ! test for roundoff error and eventually set error flag. if (iroff1 + iroff2 >= 10 .or. iroff3 >= 20) Ier = 2 if (iroff2 >= 5) ierro = 3 ! set error flag in the case that the number of subintervals ! equals limit. if (Last == Limit) Ier = 1 ! set error flag in the case of bad integrand behaviour ! at a point of the integration range. if (max(abs(a1), abs(b2)) <= (1.0_wp + 100.0_wp*epmach) & *(abs(a2) + 1000.0_wp*uflow)) Ier = 4 ! append the newly-created intervals to the list. if (error2 > error1) then Alist(maxerr) = a2 Alist(Last) = a1 Blist(Last) = b1 Rlist(maxerr) = area2 Rlist(Last) = area1 Elist(maxerr) = error2 Elist(Last) = error1 else Alist(Last) = a2 Blist(maxerr) = b1 Blist(Last) = b2 Elist(maxerr) = error1 Elist(Last) = error2 end if ! call subroutine dqpsrt to maintain the descending ordering ! in the list of error estimates and select the subinterval ! with nrmax-th largest error estimate (to be bisected next). call dqpsrt(Limit, Last, maxerr, errmax, Elist, Iord, nrmax) ! ***jump out of do-loop if (errsum <= errbnd) exit main ! ***jump out of do-loop if (Ier /= 0) exit loop if (Last == 2) then small = abs(b - a)*0.375_wp erlarg = errsum ertest = errbnd rlist2(2) = area elseif (.not. (noext)) then erlarg = erlarg - erlast if (abs(b1 - a1) > small) erlarg = erlarg + erro12 if (.not. (extrap)) then ! test whether the interval to be bisected next is the ! smallest interval. if (abs(Blist(maxerr) - Alist(maxerr)) > small) cycle loop extrap = .true. nrmax = 2 end if if (ierro /= 3 .and. erlarg > ertest) then ! the smallest interval has the largest error. ! before bisecting decrease the sum of the errors over the ! larger intervals (erlarg) and perform extrapolation. id = nrmax jupbnd = Last if (Last > (2 + Limit/2)) jupbnd = Limit + 3 - Last do k = id, jupbnd maxerr = Iord(nrmax) errmax = Elist(maxerr) ! ***jump out of do-loop if (abs(Blist(maxerr) - Alist(maxerr)) > small) cycle loop nrmax = nrmax + 1 end do end if ! perform extrapolation. numrl2 = numrl2 + 1 rlist2(numrl2) = area call dqelg(numrl2, rlist2, reseps, abseps, res3la, nres) ktmin = ktmin + 1 if (ktmin > 5 .and. Abserr < 0.1e-02_wp*errsum) Ier = 5 if (abseps < Abserr) then ktmin = 0 Abserr = abseps Result = reseps correc = erlarg ertest = max(Epsabs, Epsrel*abs(reseps)) ! ***jump out of do-loop if (Abserr <= ertest) exit loop end if ! prepare bisection of the smallest interval. if (numrl2 == 1) noext = .true. if (Ier == 5) exit loop maxerr = Iord(1) errmax = Elist(maxerr) nrmax = 1 extrap = .false. small = small*0.5_wp erlarg = errsum end if end do loop ! set final result and error estimate. if (Abserr /= oflow) then if (Ier + ierro /= 0) then if (ierro == 3) Abserr = Abserr + correc if (Ier == 0) Ier = 3 if (Result == 0.0_wp .or. area == 0.0_wp) then if (Abserr > errsum) exit main if (area == 0.0_wp) then if (Ier > 2) Ier = Ier - 1 Neval = 42*Last - 21 return end if elseif (Abserr/abs(Result) > errsum/abs(area)) then exit main end if end if ! test on divergence. if (ksgn /= (-1) .or. max(abs(Result), abs(area)) & > defabs*0.01_wp) then if (0.01_wp > (Result/area) .or. (Result/area) & > 100.0_wp .or. errsum > abs(area)) Ier = 6 end if if (Ier > 2) Ier = Ier - 1 Neval = 42*Last - 21 return end if end block main ! compute global integral sum. Result = sum(Rlist(1:Last)) Abserr = errsum if (Ier > 2) Ier = Ier - 1 Neval = 42*Last - 21 end subroutine dqagse