Integrate [1-J0(t)]/t with respect to t from 0 to x, and Y0(t)/t with respect to t from x to ∞
| Type | Intent | Optional | Attributes | Name | ||
|---|---|---|---|---|---|---|
| real(kind=wp), | intent(in) | :: | x |
Variable in the limits ( x ≥ 0 ) |
||
| real(kind=wp), | intent(out) | :: | Ttj |
Integration of [1-J0(t)]/t from 0 to x |
||
| real(kind=wp), | intent(out) | :: | Tty |
Integration of Y0(t)/t from x to ∞ |
subroutine ittjyb(x,Ttj,Tty) real(wp),intent(in) :: x !! Variable in the limits ( x ≥ 0 ) real(wp),intent(out) :: Ttj !! Integration of [1-J0(t)]/t from 0 to x real(wp),intent(out) :: Tty !! Integration of Y0(t)/t from x to ∞ real(wp) :: e0 , f0 , g0 , t , t1 , x1 , xt if ( x==0.0_wp ) then Ttj = 0.0_wp Tty = -1.0e+300_wp elseif ( x<=4.0_wp ) then x1 = x/4.0_wp t = x1*x1 Ttj = ((((((.35817e-4_wp*t-.639765e-3_wp)*t+.7092535e-2_wp)*t- & .055544803_wp)*t+.296292677_wp)*t-.999999326_wp) & *t+1.999999936_wp)*t Tty = (((((((-.3546e-5_wp*t+.76217e-4_wp)*t-.1059499e-2_wp)*t+ & .010787555_wp)*t-.07810271_wp)*t+.377255736_wp) & *t-1.114084491_wp)*t+1.909859297_wp)*t e0 = gamma + log(x/2.0_wp) Tty = pi/6.0_wp + e0/pi*(2.0_wp*Ttj-e0) - Tty elseif ( x<=8.0_wp ) then xt = x + .25_wp*pi t1 = 4.0_wp/x t = t1*t1 f0 = (((((.0145369_wp*t-.0666297_wp)*t+.1341551_wp)*t-.1647797_wp) & *t+.1608874_wp)*t-.2021547_wp)*t + .7977506_wp g0 = ((((((.0160672_wp*t-.0759339_wp)*t+.1576116_wp)*t-.1960154_wp) & *t+.1797457_wp)*t-.1702778_wp)*t+.3235819_wp)*t1 Ttj = (f0*cos(xt)+g0*sin(xt))/(sqrt(x)*x) Ttj = Ttj + gamma + log(x/2.0_wp) Tty = (f0*sin(xt)-g0*cos(xt))/(sqrt(x)*x) else t = 8.0_wp/x xt = x + .25_wp*pi f0 = (((((.18118e-2_wp*t-.91909e-2_wp)*t+.017033_wp)*t-.9394e-3_wp) & *t-.051445_wp)*t-.11e-5_wp)*t + .7978846_wp g0 = (((((-.23731e-2_wp*t+.59842e-2_wp)*t+.24437e-2_wp)*t-.0233178_wp) & *t+.595e-4_wp)*t+.1620695_wp)*t Ttj = (f0*cos(xt)+g0*sin(xt))/(sqrt(x)*x) & + gamma + log(x/2.0_wp) Tty = (f0*sin(xt)-g0*cos(xt))/(sqrt(x)*x) endif end subroutine ittjyb