EECT00 Function

public function EECT00(date1, date2) result(res)

Equation of the equinoxes complementary terms, consistent with IAU 2000 resolutions.

Status: canonical model.

Notes

  1. The TT date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD(TT)=2450123.7 could be expressed in any of these ways, among others:

        DATE1          DATE2
    
     2450123.7D0        0D0        (JD method)
      2451545D0      -1421.3D0     (J2000 method)
     2400000.5D0     50123.2D0     (MJD method)
     2450123.5D0       0.2D0       (date & time method)
    

    The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience.

  2. The "complementary terms" are part of the equation of the equinoxes (EE), classically the difference between apparent and mean Sidereal Time:

    GAST = GMST + EE
    

    with:

    EE = dpsi * cos(eps)
    

    where dpsi is the nutation in longitude and eps is the obliquity of date. However, if the rotation of the Earth were constant in an inertial frame the classical formulation would lead to apparent irregularities in the UT1 timescale traceable to side-effects of precession-nutation. In order to eliminate these effects from UT1, "complementary terms" were introduced in 1994 (IAU, 1994) and took effect from 1997 (Capitaine and Gontier, 1993):

    GAST = GMST + CT + EE
    

    By convention, the complementary terms are included as part of the equation of the equinoxes rather than as part of the mean Sidereal Time. This slightly compromises the "geometrical" interpretation of mean sidereal time but is otherwise inconsequential.

    The present routine computes CT in the above expression, compatible with IAU 2000 resolutions (Capitaine et al., 2002, and IERS Conventions 2003).

References

  • Capitaine, N. & Gontier, A.-M., Astron.Astrophys., 275, 645-650 (1993)

  • Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to implement the IAU 2000 definition of UT1", Astron.Astrophys., 406, 1135-1149 (2003)

  • IAU Resolution C7, Recommendation 3 (1994)

  • McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003), IERS Technical Note No. 32, BKG (2004)

History

  • IAU SOFA revision: 2017 October 23

Arguments

TypeIntentOptionalAttributesName
real(kind=wp), intent(in) :: date1

TT as a 2-part Julian Date (Note 1)

real(kind=wp), intent(in) :: date2

TT as a 2-part Julian Date (Note 1)

Return Value real(kind=wp)

complementary terms (Note 2)


Calls

proc~~eect00~~CallsGraph proc~eect00 EECT00 proc~faom03 FAOM03 proc~eect00->proc~faom03 proc~falp03 FALP03 proc~eect00->proc~falp03 proc~fae03 FAE03 proc~eect00->proc~fae03 proc~fal03 FAL03 proc~eect00->proc~fal03 proc~faf03 FAF03 proc~eect00->proc~faf03 proc~fad03 FAD03 proc~eect00->proc~fad03 proc~fave03 FAVE03 proc~eect00->proc~fave03 proc~fapa03 FAPA03 proc~eect00->proc~fapa03

Called by

proc~~eect00~~CalledByGraph proc~eect00 EECT00 proc~ee00 EE00 proc~ee00->proc~eect00 proc~ee00a EE00A proc~ee00a->proc~ee00 proc~ee00b EE00B proc~ee00b->proc~ee00 proc~c2tpe C2TPE proc~c2tpe->proc~ee00 proc~gst00a GST00A proc~gst00a->proc~ee00a proc~gst00b GST00B proc~gst00b->proc~ee00b

Contents

Source Code


Source Code

    function EECT00 ( date1, date2 ) result(res)

    implicit none

    real(wp),intent(in) :: date1 !! TT as a 2-part Julian Date (Note 1)
    real(wp),intent(in) :: date2 !! TT as a 2-part Julian Date (Note 1)
    real(wp) :: res !! complementary terms (Note 2)

    !  Time since J2000.0, in Julian centuries
    real(wp) :: t

    !  Miscellaneous
    integer :: i, j
    real(wp) :: a, s0, s1

    !  Fundamental arguments
    real(wp) :: fa(14)

    !  -----------------------------------------
    !  The series for the EE complementary terms
    !  -----------------------------------------

    !  Number of terms in the series
    integer,parameter :: ne0 = 33
    integer,parameter :: ne1 = 1

    !  Coefficients of l,l',F,D,Om,LVe,LE,pA

    !  Argument coefficients for t^0
    integer,dimension( 8, ne0 ),parameter :: ke0 = reshape( &
          [ 0,  0,  0,  0,  1,  0,  0,  0, &
            0,  0,  0,  0,  2,  0,  0,  0, &
            0,  0,  2, -2,  3,  0,  0,  0, &
            0,  0,  2, -2,  1,  0,  0,  0, &
            0,  0,  2, -2,  2,  0,  0,  0, &
            0,  0,  2,  0,  3,  0,  0,  0, &
            0,  0,  2,  0,  1,  0,  0,  0, &
            0,  0,  0,  0,  3,  0,  0,  0, &
            0,  1,  0,  0,  1,  0,  0,  0, &
            0,  1,  0,  0, -1,  0,  0,  0, &
            1,  0,  0,  0, -1,  0,  0,  0, &
            1,  0,  0,  0,  1,  0,  0,  0, &
            0,  1,  2, -2,  3,  0,  0,  0, &
            0,  1,  2, -2,  1,  0,  0,  0, &
            0,  0,  4, -4,  4,  0,  0,  0, &
            0,  0,  1, -1,  1, -8, 12,  0, &
            0,  0,  2,  0,  0,  0,  0,  0, &
            0,  0,  2,  0,  2,  0,  0,  0, &
            1,  0,  2,  0,  3,  0,  0,  0, &
            1,  0,  2,  0,  1,  0,  0,  0, &
            0,  0,  2, -2,  0,  0,  0,  0, &
            0,  1, -2,  2, -3,  0,  0,  0, &
            0,  1, -2,  2, -1,  0,  0,  0, &
            0,  0,  0,  0,  0,  8,-13, -1, &
            0,  0,  0,  2,  0,  0,  0,  0, &
            2,  0, -2,  0, -1,  0,  0,  0, &
            1,  0,  0, -2,  1,  0,  0,  0, &
            0,  1,  2, -2,  2,  0,  0,  0, &
            1,  0,  0, -2, -1,  0,  0,  0, &
            0,  0,  4, -2,  4,  0,  0,  0, &
            0,  0,  2, -2,  4,  0,  0,  0, &
            1,  0, -2,  0, -3,  0,  0,  0, &
            1,  0, -2,  0, -1,  0,  0,  0 ], [8, ne0])

    !  Argument coefficients for t^1
    integer,dimension( 8, ne1 ),parameter :: ke1 = reshape(&
          [0,  0,  0,  0,  1,  0,  0,  0],[8,1])

    !  Sine and cosine coefficients

    !  Sine and cosine coefficients for t^0
    real(wp),dimension( 2, ne0 ),parameter :: se0 = reshape([ &
                +2640.96e-6_wp,          -0.39e-6_wp, &
                  +63.52e-6_wp,          -0.02e-6_wp, &
                  +11.75e-6_wp,          +0.01e-6_wp, &
                  +11.21e-6_wp,          +0.01e-6_wp, &
                   -4.55e-6_wp,          +0.00e-6_wp, &
                   +2.02e-6_wp,          +0.00e-6_wp, &
                   +1.98e-6_wp,          +0.00e-6_wp, &
                   -1.72e-6_wp,          +0.00e-6_wp, &
                   -1.41e-6_wp,          -0.01e-6_wp, &
                   -1.26e-6_wp,          -0.01e-6_wp, &
                   -0.63e-6_wp,          +0.00e-6_wp, &
                   -0.63e-6_wp,          +0.00e-6_wp, &
                   +0.46e-6_wp,          +0.00e-6_wp, &
                   +0.45e-6_wp,          +0.00e-6_wp, &
                   +0.36e-6_wp,          +0.00e-6_wp, &
                   -0.24e-6_wp,          -0.12e-6_wp, &
                   +0.32e-6_wp,          +0.00e-6_wp, &
                   +0.28e-6_wp,          +0.00e-6_wp, &
                   +0.27e-6_wp,          +0.00e-6_wp, &
                   +0.26e-6_wp,          +0.00e-6_wp, &
                   -0.21e-6_wp,          +0.00e-6_wp, &
                   +0.19e-6_wp,          +0.00e-6_wp, &
                   +0.18e-6_wp,          +0.00e-6_wp, &
                   -0.10e-6_wp,          +0.05e-6_wp, &
                   +0.15e-6_wp,          +0.00e-6_wp, &
                   -0.14e-6_wp,          +0.00e-6_wp, &
                   +0.14e-6_wp,          +0.00e-6_wp, &
                   -0.14e-6_wp,          +0.00e-6_wp, &
                   +0.14e-6_wp,          +0.00e-6_wp, &
                   +0.13e-6_wp,          +0.00e-6_wp, &
                   -0.11e-6_wp,          +0.00e-6_wp, &
                   +0.11e-6_wp,          +0.00e-6_wp, &
                   +0.11e-6_wp,          +0.00e-6_wp ], [2, ne0])

    !  Sine and cosine coefficients for t^1
    real(wp),dimension( 2, ne1 ),parameter :: se1 = reshape([ &
                   -0.87e-6_wp,          +0.00e-6_wp ],[2, ne1])

    !  Interval between fundamental epoch J2000.0 and current date (JC).
    t = ( ( date1-dj00 ) + date2 ) / djc

    !  Fundamental Arguments (from IERS Conventions 2003)

    !  Mean anomaly of the Moon.
    fa(1) = FAL03 ( t )

    !  Mean anomaly of the Sun.
    fa(2) = FALP03 ( t )

    !  Mean longitude of the Moon minus that of the ascending node.
    fa(3) = FAF03 ( t )

    !  Mean elongation of the Moon from the Sun.
    fa(4) = FAD03 ( t )

    !  Mean longitude of the ascending node of the Moon.
    fa(5) = FAOM03 ( t )

    !  Mean longitude of Venus.
    fa(6) = FAVE03 ( t )

    !  Mean longitude of Earth.
    fa(7) = FAE03 ( t )

    !  General precession in longitude.
    fa(8) = FAPA03 ( t )

    !  Evaluate the EE complementary terms.
    s0 = 0.0_wp
    s1 = 0.0_wp

    do i = ne0,1,-1
       a = 0.0_wp
       do j=1,8
          a = a + real(ke0(j,i),wp)*fa(j)
       end do
       s0 = s0 + ( se0(1,i)*sin(a) + se0(2,i)*cos(a) )
    end do
    do i = ne1,1,-1
       a = 0.0_wp
       do j=1,8
          a = a + real(ke1(j,i),wp)*fa(j)
       end do
       s1 = s1 + ( se1(1,i)*sin(a) + se1(2,i)*cos(a) )
    end do
    res = ( s0 + s1 * t ) * das2r

    end function EECT00