GC2GDE Subroutine

public subroutine GC2GDE(a, f, xyz, elong, phi, height, j)

Transform geocentric coordinates to geodetic for a reference ellipsoid of specified form.

Status: support routine.

Notes

  1. This routine is closely based on the GCONV2H subroutine by Toshio Fukushima (see reference).

  2. The equatorial radius, A, can be in any units, but meters is the conventional choice.

  3. The flattening, F, is (for the Earth) a value around 0.00335, i.e. around 1/298.

  4. The equatorial radius, A, and the geocentric vector, XYZ, must be given in the same units, and determine the units of the returned height, HEIGHT.

  5. If an error occurs (J<0), ELONG, PHI and HEIGHT are unchanged.

  6. The inverse transformation is performed in the routine GD2GCE.

  7. The transformation for a standard ellipsoid (such as WGS84) can more conveniently be performed by calling GC2GD, which uses a numerical code (1 for WGS84) to identify the required A and F values.

Reference

  • Fukushima, T., "Transformation from Cartesian to geodetic coordinates accelerated by Halley's method", J.Geodesy (2006) 79: 689-693

History

  • IAU SOFA revision: 2014 November 7

Arguments

TypeIntentOptionalAttributesName
real(kind=wp), intent(in) :: a

equatorial radius (Notes 2,4)

real(kind=wp), intent(in) :: f

flattening (Note 3)

real(kind=wp), intent(in), dimension(3):: xyz

geocentric vector (Note 4)

real(kind=wp), intent(out) :: elong

longitude (radians, east +ve)

real(kind=wp), intent(out) :: phi

latitude (geodetic, radians)

real(kind=wp), intent(out) :: height

height above ellipsoid (geodetic, Note 4)

integer, intent(out) :: j
  • 0 = OK
  • -1 = illegal F
  • -2 = illegal A

Called by

proc~~gc2gde~~CalledByGraph proc~gc2gde GC2GDE proc~gc2gd GC2GD proc~gc2gd->proc~gc2gde

Contents

Source Code


Source Code

    subroutine GC2GDE ( a, f, xyz, elong, phi, height, j )

    implicit none

    real(wp),intent(in) :: a !! equatorial radius (Notes 2,4)
    real(wp),intent(in) :: f !! flattening (Note 3)
    real(wp),dimension(3),intent(in) :: xyz !! geocentric vector (Note 4)
    real(wp),intent(out) :: elong !! longitude (radians, east +ve)
    real(wp),intent(out) :: phi !! latitude (geodetic, radians)
    real(wp),intent(out) :: height !! height above ellipsoid (geodetic, Note 4)
    integer,intent(out) :: j !! status:
                             !! * 0 = OK
                             !! * -1 = illegal F
                             !! * -2 = illegal A

    real(wp) :: aeps2, e2, e4t, ec2, ec, b, x, y, z, p2, absz, p, &
                s0, pn, zc, c0, c02, c03, s02, s03, a02, a0, a03, &
                d0, f0, b0, s1, cc, s12, cc2

    !  -------------
    !  Preliminaries
    !  -------------

    !  Validate ellipsoid parameters.
    if ( f<0.0_wp .or. f>=1.0_wp ) then
       j = -1
       return
    else if ( a <= 0.0_wp ) then
       j = -2
       return
    end if

    !  Functions of ellipsoid parameters (with further validation of F).
    aeps2 = a*a*1.0e-32_wp
    e2 = (2.0_wp-f)*f
    e4t = e2*e2*1.5_wp
    ec2 = 1.0_wp-e2
    if ( ec2 <= 0.0_wp ) then
       j = -1
       return
    end if
    ec = sqrt(ec2)
    b = a*ec

    !  Cartesian components.
    x = xyz(1)
    y = xyz(2)
    z = xyz(3)

    !  Distance from polar axis squared.
    p2 = x*x + y*y

    !  Longitude.
    if ( p2>0.0_wp ) then
       elong = atan2(y,x)
    else
       elong = 0.0_wp
    end if

    !  Unsigned z-coordinate.
    absz = abs(z)

    !  Proceed unless polar case.
    if ( p2>aeps2 ) then

       !  Distance from polar axis.
       p = sqrt(p2)

       !  Normalization.
       s0 = absz/a
       pn = p/a
       zc = ec*s0

       !  Prepare Newton correction factors.
       c0 = ec*pn
       c02 = c0*c0
       c03 = c02*c0
       s02 = s0*s0
       s03 = s02*s0
       a02 = c02+s02
       a0 = sqrt(a02)
       a03 = a02*a0
       d0 = zc*a03 + e2*s03
       f0 = pn*a03 - e2*c03

       !  Prepare Halley correction factor.
       b0 = e4t*s02*c02*pn*(a0-ec)
       s1 = d0*f0 - b0*s0
       cc = ec*(f0*f0-b0*c0)

       !  Evaluate latitude and height.
       phi = atan(s1/cc)
       s12 = s1*s1
       cc2 = cc*cc
       height = (p*cc+absz*s1-a*sqrt(ec2*s12+cc2))/sqrt(s12+cc2)
    else

       !  Exception: pole.
       phi = dpi/2.0_wp
       height = absz-b
    end if

    !  Restore sign of latitude.
    if ( z<0.0_wp ) phi = -phi

    !  OK status.
    j = 0

    end subroutine GC2GDE