PLAN94 Subroutine

public subroutine PLAN94(date1, date2, np, pv, j)

Approximate heliocentric position and velocity of a nominated major planet: Mercury, Venus, EMB, Mars, Jupiter, Saturn, Uranus or Neptune (but not the Earth itself).

Status: support routine.

Notes

  1. The TDB date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD(TDB)=2450123.7 could be expressed in any of these ways, among others:

        DATE1          DATE2
    
     2450123.7D0        0D0        (JD method)
      2451545D0      -1421.3D0     (J2000 method)
     2400000.5D0     50123.2D0     (MJD method)
     2450123.5D0       0.2D0       (date & time method)
    

    The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience. The limited accuracy of the present algorithm is such that any of the methods is satisfactory.

  2. If an NP value outside the range 1-8 is supplied, an error status (J = -1) is returned and the PV vector set to zeroes.

  3. For NP=3 the result is for the Earth-Moon Barycenter. To obtain the heliocentric position and velocity of the Earth, use instead the SOFA routine EPV00.

  4. On successful return, the array PV contains the following:

    PV(1,1)  x       }
    PV(2,1)  y       } heliocentric position, au
    PV(3,1)  z       }
    
    PV(1,2)  xdot    }
    PV(2,2)  ydot    } heliocentric velocity, au/d
    PV(3,2)  zdot    }
    

    The reference frame is equatorial and is with respect to the mean equator and equinox of epoch J2000.0.

  5. The algorithm is due to J.L. Simon, P. Bretagnon, J. Chapront, M. Chapront-Touze, G. Francou and J. Laskar (Bureau des Longitudes, Paris, France). From comparisons with JPL ephemeris DE102, they quote the following maximum errors over the interval 1800-2050:

                 L (arcsec)    B (arcsec)      R (km)
    
    Mercury          4             1             300
    Venus            5             1             800
    EMB              6             1            1000
    Mars            17             1            7700
    Jupiter         71             5           76000
    Saturn          81            13          267000
    Uranus          86             7          712000
    Neptune         11             1          253000
    

    Over the interval 1000-3000, they report that the accuracy is no worse than 1.5 times that over 1800-2050. Outside 1000-3000 the accuracy declines.

    Comparisons of the present routine with the JPL DE200 ephemeris give the following RMS errors over the interval 1960-2025:

                  position (km)     velocity (m/s)
    
    Mercury            334               0.437
    Venus             1060               0.855
    EMB               2010               0.815
    Mars              7690               1.98
    Jupiter          71700               7.70
    Saturn          199000              19.4
    Uranus          564000              16.4
    Neptune         158000              14.4
    

    Comparisons against DE200 over the interval 1800-2100 gave the following maximum absolute differences. (The results using DE406 were essentially the same.)

               L (arcsec)   B (arcsec)     R (km)   Rdot (m/s)
    
    Mercury        7            1            500       0.7
    Venus          7            1           1100       0.9
    EMB            9            1           1300       1.0
    Mars          26            1           9000       2.5
    Jupiter       78            6          82000       8.2
    Saturn        87           14         263000      24.6
    Uranus        86            7         661000      27.4
    Neptune       11            2         248000      21.4
    
  6. The present SOFA re-implementation of the original Simon et al. Fortran code differs from the original in the following respects:

    • The date is supplied in two parts.

    • The result is returned only in equatorial Cartesian form; the ecliptic longitude, latitude and radius vector are not returned.

    • The result is in the J2000.0 equatorial frame, not ecliptic.

    • More is done in-line: there are fewer calls to other routines.

    • Different error/warning status values are used.

    • A different Kepler's-equation-solver is used (avoiding use of COMPLEX*16).

    • Polynomials in T are nested to minimize rounding errors.

    • Explicit double-precision constants are used to avoid mixed-mode expressions.

    • There are other, cosmetic, changes to comply with SOFA style conventions.

    None of the above changes affects the result significantly.

  7. The returned status, J, indicates the most serious condition encountered during execution of the routine. Illegal NP is considered the most serious, overriding failure to converge, which in turn takes precedence over the remote epoch warning.

Reference

  • Simon, J.L, Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., and Laskar, J., Astron.Astrophys., 282, 663 (1994).

History

  • IAU SOFA revision: 2017 October 12

Arguments

TypeIntentOptionalAttributesName
real(kind=wp), intent(in) :: date1

TDB date part A (Note 1)

real(kind=wp), intent(in) :: date2

TDB date part B (Note 1)

integer, intent(in) :: np

planet (1=Mercury, 2=Venus, 3=EMB ... 8=Neptune)

real(kind=wp), intent(out), dimension(3,2):: pv

planet pos,vel (heliocentric, J2000.0, au, au/d)

integer, intent(out) :: j
  • -1 = illegal NP (outside 1-8)
  • 0 = OK
  • +1 = warning: date outside 1000-3000 AD
  • +2 = warning: solution failed to converge

Calls

proc~~plan94~~CallsGraph proc~plan94 PLAN94 proc~anpm ANPM proc~plan94->proc~anpm

Contents

Source Code


Source Code

    subroutine PLAN94 ( date1, date2, np, pv, j )

    implicit none

    real(wp),intent(in) :: date1 !! TDB date part A (Note 1)
    real(wp),intent(in) :: date2 !! TDB date part B (Note 1)
    integer,intent(in) :: np !! planet (1=Mercury, 2=Venus, 3=EMB ... 8=Neptune)
    real(wp),dimension(3,2),intent(out) :: pv !! planet pos,vel (heliocentric, J2000.0, au, au/d)
    integer,intent(out) :: j !! status:
                             !! * -1 = illegal NP (outside 1-8)
                             !! *  0 = OK
                             !! * +1 = warning: date outside 1000-3000 AD
                             !! * +2 = warning: solution failed to converge

    !  Maximum number of iterations allowed to solve Kepler's equation
    integer,parameter :: kmax = 10

    !  Days per Julian millennium
    real(wp),parameter :: djm = 365250.0_wp

    !  Sin and cos of J2000.0 mean obliquity (IAU 1976)
    real(wp),parameter :: sineps = 0.3977771559319137_wp
    real(wp),parameter :: coseps = 0.9174820620691818_wp

    !  Gaussian constant
    real(wp),parameter :: gk = 0.017202098950_wp

    integer :: jstat, i, k
    real(wp) :: t, da, dl, de, dp, di, dom, dmu, arga, argl, am, &
                ae, dae, ae2, at, r, v, si2, xq, xp, tl, xsw, &
                xcw, xm2, xf, ci2, xms, xmc, xpxq2, x, y, z

    !  Planetary inverse masses
    real(wp),dimension(8),parameter :: amas = [ &
                6023600.0_wp, 408523.5_wp, 328900.5_wp, 3098710.0_wp, &
                1047.355_wp, 3498.5_wp, 22869.0_wp, 19314.0_wp ]

    !
    !  Tables giving the mean Keplerian elements, limited to T**2 terms:
    !
    real(wp),dimension(3,8),parameter :: a = reshape([&
      0.3870983098_wp,            0.0_wp,        0.0_wp, &
      0.7233298200_wp,            0.0_wp,        0.0_wp, &
      1.0000010178_wp,            0.0_wp,        0.0_wp, &
      1.5236793419_wp,        3.0e-10_wp,        0.0_wp, &
      5.2026032092_wp,    19132.0e-10_wp,  -39.0e-10_wp, &
      9.5549091915_wp,  -0.0000213896_wp,  444.0e-10_wp, &
     19.2184460618_wp,      -3716e-10_wp,  979.0e-10_wp, &
     30.1103868694_wp,     -16635e-10_wp,  686.0e-10_wp ], [3,8]) !! semi-major axis (au)
    !
    real(wp),dimension(3,8),parameter :: dlm = reshape([&
     252.25090552_wp, 5381016286.88982_wp,  -1.92789_wp, &
     181.97980085_wp, 2106641364.33548_wp,   0.59381_wp, &
     100.46645683_wp, 1295977422.83429_wp,  -2.04411_wp, &
     355.43299958_wp,  689050774.93988_wp,   0.94264_wp, &
      34.35151874_wp,  109256603.77991_wp, -30.60378_wp, &
      50.07744430_wp,   43996098.55732_wp,  75.61614_wp, &
     314.05500511_wp,   15424811.93933_wp,  -1.75083_wp, &
     304.34866548_wp,    7865503.20744_wp,   0.21103_wp ], [3,8]) !! mean longitude (degree and arcsecond)
    !
    real(wp),dimension(3,8),parameter :: e = reshape([&
     0.2056317526_wp,  0.0002040653_wp,    -28349e-10_wp, &
     0.0067719164_wp, -0.0004776521_wp,     98127e-10_wp, &
     0.0167086342_wp, -0.0004203654_wp, -0.0000126734_wp, &
     0.0934006477_wp,  0.0009048438_wp,    -80641e-10_wp, &
     0.0484979255_wp,  0.0016322542_wp, -0.0000471366_wp, &
     0.0555481426_wp, -0.0034664062_wp, -0.0000643639_wp, &
     0.0463812221_wp, -0.0002729293_wp,  0.0000078913_wp, &
     0.0094557470_wp,  0.0000603263_wp,            0.0_wp ], [3,8]) !! eccentricity
    !
    real(wp),dimension(3,8),parameter :: pi = reshape([&
      77.45611904_wp,  5719.11590_wp,   -4.83016_wp, &
     131.56370300_wp,   175.48640_wp, -498.48184_wp, &
     102.93734808_wp, 11612.35290_wp,   53.27577_wp, &
     336.06023395_wp, 15980.45908_wp,  -62.32800_wp, &
      14.33120687_wp,  7758.75163_wp,  259.95938_wp, &
      93.05723748_wp, 20395.49439_wp,  190.25952_wp, &
     173.00529106_wp,  3215.56238_wp,  -34.09288_wp, &
      48.12027554_wp,  1050.71912_wp,   27.39717_wp ], [3,8]) !! longitude of the perihelion (degree and arcsecond)
    !
    real(wp),dimension(3,8),parameter :: dinc = reshape([&
     7.00498625_wp, -214.25629_wp,   0.28977_wp, &
     3.39466189_wp,  -30.84437_wp, -11.67836_wp, &
            0.0_wp,  469.97289_wp,  -3.35053_wp, &
     1.84972648_wp, -293.31722_wp,  -8.11830_wp, &
     1.30326698_wp,  -71.55890_wp,  11.95297_wp, &
     2.48887878_wp,   91.85195_wp, -17.66225_wp, &
     0.77319689_wp,  -60.72723_wp,   1.25759_wp, &
     1.76995259_wp,    8.12333_wp,   0.08135_wp ], [3,8]) !! inclination (degree and arcsecond)
    !
    real(wp),dimension(3,8),parameter :: omega = reshape([&
      48.33089304_wp,  -4515.21727_wp,  -31.79892_wp, &
      76.67992019_wp, -10008.48154_wp,  -51.32614_wp, &
     174.87317577_wp,  -8679.27034_wp,   15.34191_wp, &
      49.55809321_wp, -10620.90088_wp, -230.57416_wp, &
     100.46440702_wp,   6362.03561_wp,  326.52178_wp, &
     113.66550252_wp,  -9240.19942_wp,  -66.23743_wp, &
      74.00595701_wp,   2669.15033_wp,  145.93964_wp, &
     131.78405702_wp,   -221.94322_wp,   -0.78728_wp ], [3,8]) !! longitude of the ascending node (degree and arcsecond)

    !
    !  Tables for trigonometric terms to be added to the mean elements
    !  of the semi-major axes.
    !
    real(wp),dimension(9,8),parameter :: kp = reshape([&
     69613, 75645, 88306, 59899, 15746, 71087, 142173,  3086,    0, &
     21863, 32794, 26934, 10931, 26250, 43725,  53867, 28939,    0, &
     16002, 21863, 32004, 10931, 14529, 16368,  15318, 32794,    0, &
     6345,   7818, 15636,  7077,  8184, 14163,   1107,  4872,    0, &
     1760,   1454,  1167,   880,   287,  2640,     19,  2047, 1454, &
      574,      0,   880,   287,    19,  1760,   1167,   306,  574, &
      204,      0,   177,  1265,     4,   385,    200,   208,  204, &
        0,    102,   106,     4,    98,  1367,    487,   204,    0 ], [9,8])
    !
    real(wp),dimension(9,8),parameter :: ca = reshape([&
          4,    -13,    11,    -9,    -9,    -3,    -1,     4,    0, &
       -156,     59,   -42,     6,    19,   -20,   -10,   -12,    0, &
         64,   -152,    62,    -8,    32,   -41,    19,   -11,    0, &
        124,    621,  -145,   208,    54,   -57,    30,    15,    0, &
     -23437,  -2634,  6601,  6259, -1507, -1821,  2620, -2115,-1489, &
      62911,-119919, 79336, 17814,-24241, 12068,  8306, -4893, 8902, &
     389061,-262125,-44088,  8387,-22976, -2093,  -615, -9720, 6633, &
    -412235,-157046,-31430, 37817, -9740,   -13, -7449,  9644,    0 ], [9,8])
    !
    real(wp),dimension(9,8),parameter :: sa = reshape([&
         -29,    -1,     9,     6,    -6,     5,     4,     0,    0, &
         -48,  -125,   -26,   -37,    18,   -13,   -20,    -2,    0, &
        -150,   -46,    68,    54,    14,    24,   -28,    22,    0, &
        -621,   532,  -694,   -20,   192,   -94,    71,   -73,    0, &
      -14614,-19828, -5869,  1881, -4372, -2255,   782,   930,  913, &
      139737,     0, 24667, 51123, -5102,  7429, -4095, -1976,-9566, &
     -138081,     0, 37205,-49039,-41901,-33872,-27037,-12474,18797, &
           0, 28492,133236, 69654, 52322,-49577,-26430, -3593,    0 ], [9,8])
    !
    !  Tables giving the trigonometric terms to be added to the mean
    !  elements of the mean longitudes.
    !
    real(wp),dimension(10,8),parameter :: kq = reshape([&
      3086, 15746, 69613, 59899, 75645, 88306, 12661, 2658,  0,   0, &
     21863, 32794, 10931,    73,  4387, 26934,  1473, 2157,  0,   0, &
        10, 16002, 21863, 10931,  1473, 32004,  4387,   73,  0,   0, &
        10,  6345,  7818,  1107, 15636,  7077,  8184,  532, 10,   0, &
        19,  1760,  1454,   287,  1167,   880,   574, 2640, 19,1454, &
        19,   574,   287,   306,  1760,    12,    31,   38, 19, 574, &
         4,   204,   177,     8,    31,   200,  1265,  102,  4, 204, &
         4,   102,   106,     8,    98,  1367,   487,  204,  4, 102 ], [10,8])
    !
    real(wp),dimension(10,8),parameter :: cl = reshape([&
         21,   -95, -157,   41,   -5,   42,   23,   30,     0,    0, &
       -160,  -313, -235,   60,  -74,  -76,  -27,   34,     0,    0, &
       -325,  -322,  -79,  232,  -52,   97,   55,  -41,     0,    0, &
       2268,  -979,  802,  602, -668,  -33,  345,  201,   -55,    0, &
       7610, -4997,-7689,-5841,-2617, 1115, -748, -607,  6074,  354, &
     -18549, 30125,20012, -730,  824,   23, 1289, -352,-14767,-2062, &
    -135245,-14594, 4197,-4030,-5630,-2898, 2540, -306,  2939, 1986, &
      89948,  2103, 8963, 2695, 3682, 1648,  866, -154, -1963, -283 ], [10,8])
    !
    real(wp),dimension(10,8),parameter :: sl = reshape([&
       -342,   136,  -23,   62,   66,  -52,  -33,   17,     0,    0, &
        524,  -149,  -35,  117,  151,  122,  -71,  -62,     0,    0, &
       -105,  -137,  258,   35, -116,  -88, -112,  -80,     0,    0, &
        854,  -205, -936, -240,  140, -341,  -97, -232,   536,    0, &
     -56980,  8016, 1012, 1448,-3024,-3710,  318,  503,  3767,  577, &
     138606,-13478,-4964, 1441,-1319,-1482,  427, 1236, -9167,-1918, &
      71234,-41116, 5334,-4935,-1848,   66,  434,-1748,  3780, -701, &
     -47645, 11647, 2166, 3194,  679,    0, -244, -419, -2531,   48 ], [10,8])

    !  Validate the planet number.
    if ( np<1 .or. np>8 ) then
       jstat = -1

       !  Reset the result in case of failure.
       do k=1,2
          do i=1,3
             pv(i,k) = 0.0_wp
          end do
       end do
    else

       !  Time: Julian millennia since J2000.0.
       t = ( ( date1-dj00 ) + date2 ) / djm

       !  OK status unless remote epoch.
       if ( abs(t) <= 1.0_wp ) then
          jstat = 0
       else
          jstat = 1
       end if

       !  Compute the mean elements.
       da = a(1,np) + &
          ( a(2,np) + &
            a(3,np) * t ) * t
       dl = ( 3600.0_wp * dlm(1,np) + &
                     ( dlm(2,np) + &
                       dlm(3,np) * t ) * t ) * das2r
       de = e(1,np) + &
          ( e(2,np) + &
            e(3,np) * t ) * t
       dp = ANPM ( ( 3600.0_wp * pi(1,np) + &
                                ( pi(2,np) + &
                                  pi(3,np) * t ) * t ) * das2r )
       di = ( 3600.0_wp * dinc(1,np) + &
                     ( dinc(2,np) + &
                       dinc(3,np) * t ) * t ) * das2r
       dom = ANPM ( ( 3600.0_wp * omega(1,np) &
                               + ( omega(2,np) &
                                 + omega(3,np) * t ) * t ) * das2r )

       !  Apply the trigonometric terms.
       dmu = 0.35953620_wp * t
       do k=1,8
          arga = kp(k,np) * dmu
          argl = kq(k,np) * dmu
          da = da + ( ca(k,np) * cos(arga) + &
                      sa(k,np) * sin(arga) ) * 1.0e-7_wp
          dl = dl + ( cl(k,np) * cos(argl) + &
                      sl(k,np) * sin(argl) ) * 1.0e-7_wp
       end do
       arga = kp(9,np) * dmu
       da = da + t * ( ca(9,np) * cos(arga) + &
                       sa(9,np) * sin(arga) ) * 1.0e-7_wp
       do k=9,10
          argl = kq(k,np) * dmu
          dl = dl + t * ( cl(k,np) * cos(argl) + &
                          sl(k,np) * sin(argl) ) * 1.0e-7_wp
       end do
       dl = mod(dl, d2pi)

       !  Iterative solution of Kepler's equation to get eccentric anomaly.
       am = dl - dp
       ae = am + de*sin(am)
       k = 0
       do
          dae = ( am - ae + de*sin(ae) ) / ( 1.0_wp - de*cos(ae) )
          ae = ae + dae
          k = k + 1
          if ( k>=kmax ) jstat = 2
          if ( k==kmax .or. abs(dae) <= 1.0e-12_wp ) exit
       end do
       !  True anomaly.
       ae2 = ae / 2.0_wp
       at = 2.0_wp * atan2(sqrt((1.0_wp+de)/(1.0_wp-de)) * sin(ae2), &
                                                  cos(ae2))

       !  Distance (au) and speed (radians per day).
       r = da * ( 1.0_wp - de*cos(ae) )
       v = gk * sqrt( ( 1.0_wp + 1.0_wp/amas(np) ) / (da*da*da))

       si2 = sin(di/2.0_wp)
       xq = si2 * cos(dom)
       xp = si2 * sin(dom)
       tl = at + dp
       xsw = sin(tl)
       xcw = cos(tl)
       xm2 = 2.0_wp * ( xp*xcw - xq*xsw )
       xf = da / sqrt(1.0_wp - de*de)
       ci2 = cos(di/2.0_wp)
       xms = ( de * sin(dp) + xsw ) * xf
       xmc = ( de * cos(dp) + xcw ) * xf
       xpxq2 = 2.0_wp * xp * xq

       !  Position (J2000.0 ecliptic x,y,z in au).
       x = r * ( xcw - xm2*xp )
       y = r * ( xsw + xm2*xq )
       z = r * ( -xm2 * ci2 )

       !  Rotate to equatorial.
       pv(1,1) = x
       pv(2,1) = y*coseps - z*sineps
       pv(3,1) = y*sineps + z*coseps

       !  Velocity (J2000.0 ecliptic xdot,ydot,zdot in au/d).
       x = v * ( ( -1.0_wp + 2.0_wp*xp*xp ) * xms + xpxq2 * xmc )
       y = v * ( ( 1.0_wp - 2.0_wp*xq*xq ) * xmc - xpxq2 * xms )
       z = v * ( 2.0_wp * ci2 * ( xp*xms + xq*xmc ) )

       !  Rotate to equatorial.
       pv(1,2) = x
       pv(2,2) = y*coseps - z*sineps
       pv(3,2) = y*sineps + z*coseps

    end if

    !  Return the status.
    j = jstat

    end subroutine PLAN94