Inner (=scalar=dot) product of two pv-vectors.
Status: vector/matrix support routine.
If the position and velocity components of the two pv-vectors are ( Ap, Av ) and ( Bp, Bv ), the result, A . B, is the pair of numbers ( Ap . Bp , Ap . Bv + Av . Bp ). The two numbers are the dot-product of the two p-vectors and its derivative.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in), | dimension(3,2) | :: | a | first pv-vector |
|
real(kind=wp), | intent(in), | dimension(3,2) | :: | b | second pv-vector |
|
real(kind=wp), | intent(out), | dimension(2) | :: | adb | A . B (see note) |
subroutine PVDPV ( a, b, adb )
implicit none
real(wp),dimension(3,2),intent(in) :: a !! first pv-vector
real(wp),dimension(3,2),intent(in) :: b !! second pv-vector
real(wp),dimension(2),intent(out) :: adb !! A . B (see note)
real(wp) :: adbd, addb
! A . B = constant part of result.
call PDP ( a(1,1), b(1,1), adb(1) )
! A . Bdot
call PDP ( a(1,1), b(1,2), adbd )
! Adot . B
call PDP ( a(1,2), b(1,1), addb )
! Velocity part of result.
adb(2) = adbd + addb
end subroutine PVDPV