Outer (=vector=cross) product of two pv-vectors.
Status: vector/matrix support routine.
If the position and velocity components of the two pv-vectors are ( Ap, Av ) and ( Bp, Bv ), the result, A x B, is the pair of vectors ( Ap x Bp, Ap x Bv + Av x Bp ). The two vectors are the cross-product of the two p-vectors and its derivative.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in), | dimension(3,2) | :: | a | first pv-vector |
|
real(kind=wp), | intent(in), | dimension(3,2) | :: | b | second pv-vector |
|
real(kind=wp), | intent(out), | dimension(3,2) | :: | axb | A x B |
subroutine PVXPV ( a, b, axb )
implicit none
real(wp),dimension(3,2),intent(in) :: a !! first pv-vector
real(wp),dimension(3,2),intent(in) :: b !! second pv-vector
real(wp),dimension(3,2),intent(out) :: axb !! A x B
real(wp) :: wa(3,2), wb(3,2), axbd(3), adxb(3)
! Make copies of the inputs.
call CPV ( a, wa )
call CPV ( b, wb )
! A x B = position part of result.
call PXP ( wa(1,1), wb(1,1), axb(1,1) )
! A x Bdot + Adot x B = velocity part of result.
call PXP ( wa(1,1), wb(1,2), axbd )
call PXP ( wa(1,2), wb(1,1), adxb )
call PPP ( axbd, adxb, axb(1,2) )
end subroutine PVXPV