In the tangent plane projection, given the star's rectangular coordinates and the spherical coordinates of the tangent point, solve for the spherical coordinates of the star.
Status: support routine.
The tangent plane projection is also called the "gnomonic projection" and the "central projection".
The eta axis points due north in the adopted coordinate system. If the spherical coordinates are observed (RA,Dec), the tangent plane coordinates (xi,eta) are conventionally called the "standard coordinates". If the direction cosines are with respect to a right-handed triad, (xi,eta) are also right-handed. The units of (xi,eta) are, effectively, radians at the tangent point.
All angular arguments are in radians.
This routine is a member of the following set:
spherical vector solve for
TPXES TPXEV xi,eta
TPSTS < TPSTV star TPORS TPORV origin
Calabretta M.R. & Greisen, E.W., 2002, "Representations of celestial coordinates in FITS", Astron.Astrophys. 395, 1077
Green, R.M., "Spherical Astronomy", Cambridge University Press, 1987, Chapter 13.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | xi | rectangular coordinates of star image (Note 2) |
||
real(kind=wp), | intent(in) | :: | eta | rectangular coordinates of star image (Note 2) |
||
real(kind=wp), | intent(in) | :: | a0 | tangent point's spherical coordinates |
||
real(kind=wp), | intent(in) | :: | b0 | tangent point's spherical coordinates |
||
real(kind=wp), | intent(out) | :: | a | star's spherical coordinates |
||
real(kind=wp), | intent(out) | :: | b | star's spherical coordinates |
subroutine TPSTS ( xi, eta, a0, b0, a, b )
implicit none
real(wp),intent(in) :: xi !! rectangular coordinates of star image (Note 2)
real(wp),intent(in) :: eta !! rectangular coordinates of star image (Note 2)
real(wp),intent(in) :: a0 !! tangent point's spherical coordinates
real(wp),intent(in) :: b0 !! tangent point's spherical coordinates
real(wp),intent(out) :: a !! star's spherical coordinates
real(wp),intent(out) :: b !! star's spherical coordinates
real(wp) :: sb0, cb0, d
sb0 = sin(b0)
cb0 = cos(b0)
d = cb0 - eta*sb0
a = ANP(atan2(xi,d)+a0)
b = atan2(sb0+eta*cb0,sqrt(xi*xi+d*d))
end subroutine TPSTS