In the tangent plane projection, given celestial direction cosines for a star and the tangent point, solve for the star's rectangular coordinates in the tangent plane.
Status: support routine.
The tangent plane projection is also called the "gnomonic projection" and the "central projection".
The eta axis points due north in the adopted coordinate system. If the direction cosines represent observed (RA,Dec), the tangent plane coordinates (xi,eta) are conventionally called the "standard coordinates". If the direction cosines are with respect to a right-handed triad, (xi,eta) are also right-handed. The units of (xi,eta) are, effectively, radians at the tangent point.
The method used is to extend the star vector to the tangent plane and then rotate the triad so that (x,y) becomes (xi,eta). Writing (a,b) for the celestial spherical coordinates of the star, the sequence of rotations is (a+pi/2) around the z-axis followed by (pi/2-b) around the x-axis.
If vector V0 is not of unit length, or if vector V is of zero length, the results will be wrong.
If V0 points at a pole, the returned (XI,ETA) will be based on the arbitrary assumption that the longitude coordinate of the tangent point is zero.
This routine is a member of the following set:
spherical vector solve for
TPXES > TPXEV < xi,eta
TPSTS TPSTV star
TPORS TPORV origin
Calabretta M.R. & Greisen, E.W., 2002, "Representations of celestial coordinates in FITS", Astron.Astrophys. 395, 1077
Green, R.M., "Spherical Astronomy", Cambridge University Press, 1987, Chapter 13.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in), | dimension(3) | :: | v | direction cosines of star (Note 4) |
|
real(kind=wp), | intent(in), | dimension(3) | :: | v0 | direction cosines of tangent point (Note 4) |
|
real(kind=wp), | intent(out) | :: | xi | tangent plane coordinates of star |
||
real(kind=wp), | intent(out) | :: | eta | tangent plane coordinates of star |
||
integer, | intent(out) | :: | j |
|
subroutine TPXEV ( v, v0, xi, eta, j )
implicit none
real(wp),dimension(3),intent(in) :: v !! direction cosines of star (Note 4)
real(wp),dimension(3),intent(in) :: v0 !! direction cosines of tangent point (Note 4)
real(wp),intent(out) :: xi !! tangent plane coordinates of star
real(wp),intent(out) :: eta !! tangent plane coordinates of star
integer,intent(out) :: j !! status:
!! * 0 = OK
!! * 1 = star too far from axis
!! * 2 = antistar on tangent plane
!! * 3 = antistar too far from axis
real(wp),parameter :: tiny = 1.0e-6_wp
real(wp) :: x, y, z, x0, y0, z0, r2, r, w, d
! Star and tangent point.
x = v(1)
y = v(2)
z = v(3)
x0 = v0(1)
y0 = v0(2)
z0 = v0(3)
! Deal with polar case.
r2 = x0*x0 + y0*y0
r = sqrt(r2)
if ( r == 0.0_wp ) then
r = 1e-20_wp
x0 = r
end if
! Reciprocal of star vector length to tangent plane.
w = x*x0 + y*y0
d = w + z*z0
! Check for error cases.
if ( d > tiny ) then
j = 0
else if ( d >= 0.0_wp ) then
j = 1
d = tiny
else if ( d > -tiny ) then
j = 2
d = -tiny
else
j = 3
end if
! Return the tangent plane coordinates (even in dubious cases).
d = r*d
xi = ( y*x0 - x*y0 ) / d
eta = ( z*r2 - z0*w ) / d
end subroutine TPXEV