Procedure | Location | Procedure Type | Description |
---|---|---|---|
AngDiff | geodesic_module | Function | Compute y - x. x and y must both lie in [-180, 180]. The result is equivalent to computing the difference exactly, reducing it to (-180, 180] and rounding the result. Note that this prescription allows -180 to be returned (e.g., if x is tiny and negative and y = 180). The error in the difference is returned in e |
AngNormalize | geodesic_module | Function | |
AngRound | geodesic_module | Function | The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57 for reals = 0.7 pm on the earth if x is an angle in degrees. (This is about 1000 times more resolution than we get with angles around 90 degrees.) We use this to avoid having to deal with near singular cases when x is non-zero but tiny (e.g., 1.0e-200). |
area | geodesic_module | Subroutine | Determine the area of a geodesic polygon |
cartesian_to_geodetic_triaxial | geodesic_module | Subroutine | Function computes the geodetic latitude (phi), longitude (lambda) and height (h) of a point related to an ellipsoid defined by its three semiaxes ax, ay and b (0 < b <= ay <= ax) given Cartesian coordinates Xi, Yi, Zi and tolerance (tol). Latitude and longitude are returned in radians. |
cartesian_to_geodetic_triaxial_2 | geodesic_module | Subroutine | Cartesian to geodetic for Triaxial Ellipsoid. |
CartesianIntoGeodeticI | geodesic_module | Subroutine | Cartesian to Geodetic I |
CartesianIntoGeodeticII | geodesic_module | Subroutine | Cartesian into Geodetic II |
direct | geodesic_module | Subroutine | Solve the direct geodesic problem. |
direct_vincenty | geodesic_module | Subroutine | Solve the "direct" geodetic problem: given the latitude and longitude of one point and the azimuth and distance to a second point, determine the latitude and longitude of that second point. The solution is obtained using the algorithm by Vincenty. |
geocentric_radius | geodesic_module | Function | The distance from the center of a celestial body (e.g., the Earth) to a point on the spheroid surface at a specified geodetic latitude. |
geodetic_to_cartesian | geodesic_module | Subroutine | Geodetic latitude, longitude, and height to Cartesian position vector. |
geodetic_to_cartesian_triaxial | geodesic_module | Subroutine | Function computes the Cartesian coordinates given the geodetic latitude (phi), longitude (lambda) and height (h) of a point related to an ellipsoid defined by its three semiaxes ax, ay and b |
geodetic_to_cartesian_triaxial_2 | geodesic_module | Subroutine | Geodetic to Cartesian for Triaxial Ellipsoid. |
great_circle_distance | geodesic_module | Function | Great circle distance on a spherical body, using the Vincenty algorithm. |
heikkinen | geodesic_module | Subroutine | Heikkinen routine for cartesian to geodetic transformation |
inverse | geodesic_module | Subroutine | Solve the inverse geodesic problem. |
inverse_vincenty | geodesic_module | Subroutine | INVERSE computes the geodetic azimuth and distance between two points, given their geographic positions. |
LatFix | geodesic_module | Function | |
olson | geodesic_module | Subroutine | Olson routine for cartesian to geodetic transformation. |
sincosd | geodesic_module | Subroutine | Compute |
sumx | geodesic_module | Function |