same as dqaws but provides more information and control
the routine calculates an approximation result to a given
definite integral i = integral of f*w over (a,b)
,
(where w
shows a singular behaviour at the end points,
see parameter integr).
hopefully satisfying following claim for accuracy
abs(i-result)<=max(epsabs,epsrel*abs(i))
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
procedure(func) | :: | f |
function subprogram defining the integrand function |
|||
real(kind=wp), | intent(in) | :: | a |
lower limit of integration |
||
real(kind=wp), | intent(in) | :: | b |
upper limit of integration, |
||
real(kind=wp), | intent(in) | :: | Alfa |
parameter in the weight function, |
||
real(kind=wp), | intent(in) | :: | Beta |
parameter in the weight function, |
||
integer, | intent(in) | :: | Integr |
indicates which weight function is to be used:
if |
||
real(kind=wp), | intent(in) | :: | Epsabs |
absolute accuracy requested |
||
real(kind=wp), | intent(in) | :: | Epsrel |
relative accuracy requested.
if |
||
integer, | intent(in) | :: | Limit |
gives an upper bound on the number of subintervals
in the partition of |
||
real(kind=wp), | intent(out) | :: | Result |
approximation to the integral |
||
real(kind=wp), | intent(out) | :: | Abserr |
estimate of the modulus of the absolute error,
which should equal or exceed |
||
integer, | intent(out) | :: | Neval |
number of integrand evaluations |
||
integer, | intent(out) | :: | Ier |
|
||
real(kind=wp), | intent(out) | :: | Alist(Limit) |
vector of dimension at least |
||
real(kind=wp), | intent(out) | :: | Blist(Limit) |
vector of dimension at least |
||
real(kind=wp), | intent(out) | :: | Rlist(Limit) |
vector of dimension at least |
||
real(kind=wp), | intent(out) | :: | Elist(Limit) |
vector of dimension at least |
||
integer, | intent(out) | :: | Iord(Limit) |
vector of dimension at least |
||
integer, | intent(out) | :: | Last |
number of subintervals actually produced in the subdivision process |
subroutine dqawse(f, a, b, Alfa, Beta, Integr, Epsabs, Epsrel, Limit, & Result, Abserr, Neval, Ier, Alist, Blist, Rlist, Elist, & Iord, Last) implicit none procedure(func) :: f !! function subprogram defining the integrand function `f(x)`. real(wp), intent(in) :: a !! lower limit of integration real(wp), intent(in) :: b !! upper limit of integration, `b>a`. !! if `b<=a`, the routine will end with ier = 6. real(wp), intent(in) :: Alfa !! parameter in the weight function, `alfa>(-1)` !! if `alfa<=(-1)`, the routine will end with !! ier = 6. real(wp), intent(in) :: Beta !! parameter in the weight function, `beta>(-1)` !! if `beta<=(-1)`, the routine will end with !! ier = 6. integer, intent(in) :: Integr !! indicates which weight function is to be used: !! !! * = 1 `(x-a)**alfa*(b-x)**beta` !! * = 2 `(x-a)**alfa*(b-x)**beta*log(x-a)` !! * = 3 `(x-a)**alfa*(b-x)**beta*log(b-x)` !! * = 4 `(x-a)**alfa*(b-x)**beta*log(x-a)*log(b-x)` !! !! if `integr<1` or `integr>4`, the routine !! will end with ier = 6. real(wp), intent(in) :: Epsabs !! absolute accuracy requested real(wp), intent(in) :: Epsrel !! relative accuracy requested. !! if `epsabs<=0` !! and `epsrel<max(50*rel.mach.acc.,0.5e-28)`, !! the routine will end with ier = 6. integer, intent(in) :: Limit !! gives an upper bound on the number of subintervals !! in the partition of `(a,b)`, `limit>=2` !! if `limit<2`, the routine will end with ier = 6. real(wp), intent(out) :: Result !! approximation to the integral real(wp), intent(out) :: Abserr !! estimate of the modulus of the absolute error, !! which should equal or exceed `abs(i-result)` integer, intent(out) :: Neval !! number of integrand evaluations integer, intent(out) :: Ier !! * ier = 0 normal and reliable termination of the !! routine. it is assumed that the requested !! accuracy has been achieved. !! * ier>0 abnormal termination of the routine !! the estimates for the integral and error !! are less reliable. it is assumed that the !! requested accuracy has not been achieved. !! error messages !! * ier = 1 maximum number of subdivisions allowed !! has been achieved. one can allow more !! subdivisions by increasing the value of !! limit. however, if this yields no !! improvement, it is advised to analyze the !! integrand in order to determine the !! integration difficulties which prevent the !! requested tolerance from being achieved. !! in case of a jump discontinuity or a local !! singularity of algebraico-logarithmic type !! at one or more interior points of the !! integration range, one should proceed by !! splitting up the interval at these !! points and calling the integrator on the !! subranges. !! * ier = 2 the occurrence of roundoff error is !! detected, which prevents the requested !! tolerance from being achieved. !! * ier = 3 extremely bad integrand behaviour occurs !! at some points of the integration !! interval. !! * ier = 6 the input is invalid, because !! `b<=a` or `alfa<=(-1)` or `beta<=(-1)`, or !! `integr<1` or `integr>4`, or !! `epsabs<=0` and !! `epsrel<max(50*rel.mach.acc.,0.5e-28)`, !! or `limit<2`. !! `result`, `abserr`, `neval`, `rlist(1)`, `elist(1)`, !! `iord(1)` and `last` are set to zero. `alist(1)` !! and `blist(1)` are set to `a` and `b` !! respectively. real(wp), intent(out) :: Alist(Limit) !! vector of dimension at least `limit`, the first !! `last` elements of which are the left !! end points of the subintervals in the partition !! of the given integration range `(a,b)` real(wp), intent(out) :: Blist(Limit) !! vector of dimension at least `limit`, the first !! `last` elements of which are the right !! end points of the subintervals in the partition !! of the given integration range `(a,b)` real(wp), intent(out) :: Rlist(Limit) !! vector of dimension at least `limit`,the first !! `last` elements of which are the integral !! approximations on the subintervals real(wp), intent(out) :: Elist(Limit) !! vector of dimension at least `limit`, the first !! `last` elements of which are the moduli of the !! absolute error estimates on the subintervals integer, intent(out) :: Iord(Limit) !! vector of dimension at least `limit`, the first `k` !! of which are pointers to the error !! estimates over the subintervals, so that !! `elist(iord(1)), ..., elist(iord(k))` with `k = last` !! if `last<=(limit/2+2)`, and `k = limit+1-last` !! otherwise form a decreasing sequence integer, intent(out) :: Last !! number of subintervals actually produced in !! the subdivision process real(wp) :: a1, b1, area1, error1 !! variable for the left subinterval real(wp) :: a2, b2, area2, error2 !! variable for the right subinterval real(wp) :: area12 !! `area1 + area2` real(wp) :: erro12 !! `error1 + error2` real(wp) :: area !! sum of the integrals over the subintervals real(wp) :: errbnd !! requested accuracy `max(epsabs,epsrel*abs(result))` real(wp) :: errmax !! `elist(maxerr)` real(wp) :: errsum !! sum of the errors over the subintervals integer :: maxerr !! pointer to the interval with largest error estimate real(wp) :: centre, resas1, resas2, rg(25), rh(25), ri(25), rj(25) integer :: iroff1, iroff2, k, nev, nrmax ! test on validity of parameters Ier = 6 Neval = 0 Last = 0 Rlist(1) = 0.0_wp Elist(1) = 0.0_wp Iord(1) = 0 Result = 0.0_wp Abserr = 0.0_wp if (.not. (b <= a .or. (Epsabs == 0.0_wp .and. Epsrel < max(50.0_wp* & epmach, 0.5e-28_wp)) .or. Alfa <= (-1.0_wp) .or. Beta <= (-1.0_wp) & .or. Integr < 1 .or. Integr > 4 .or. Limit < 2)) then Ier = 0 ! compute the modified chebyshev moments. call dqmomo(Alfa, Beta, ri, rj, rg, rh, Integr) ! integrate over the intervals (a,(a+b)/2) and ((a+b)/2,b). centre = 0.5_wp*(b + a) call dqc25s(f, a, b, a, centre, Alfa, Beta, ri, rj, rg, rh, area1, error1, & resas1, Integr, nev) Neval = nev call dqc25s(f, a, b, centre, b, Alfa, Beta, ri, rj, rg, rh, area2, error2, & resas2, Integr, nev) Last = 2 Neval = Neval + nev Result = area1 + area2 Abserr = error1 + error2 ! test on accuracy. errbnd = max(Epsabs, Epsrel*abs(Result)) ! initialization if (error2 > error1) then Alist(1) = centre Alist(2) = a Blist(1) = b Blist(2) = centre Rlist(1) = area2 Rlist(2) = area1 Elist(1) = error2 Elist(2) = error1 else Alist(1) = a Alist(2) = centre Blist(1) = centre Blist(2) = b Rlist(1) = area1 Rlist(2) = area2 Elist(1) = error1 Elist(2) = error2 end if Iord(1) = 1 Iord(2) = 2 if (Limit == 2) Ier = 1 if (Abserr > errbnd .and. Ier /= 1) then errmax = Elist(1) maxerr = 1 nrmax = 1 area = Result errsum = Abserr iroff1 = 0 iroff2 = 0 ! main do-loop do Last = 3, Limit ! bisect the subinterval with largest error estimate. a1 = Alist(maxerr) b1 = 0.5_wp*(Alist(maxerr) + Blist(maxerr)) a2 = b1 b2 = Blist(maxerr) call dqc25s(f, a, b, a1, b1, Alfa, Beta, ri, rj, rg, rh, area1, & error1, resas1, Integr, nev) Neval = Neval + nev call dqc25s(f, a, b, a2, b2, Alfa, Beta, ri, rj, rg, rh, area2, & error2, resas2, Integr, nev) Neval = Neval + nev ! improve previous approximations integral and error ! and test for accuracy. area12 = area1 + area2 erro12 = error1 + error2 errsum = errsum + erro12 - errmax area = area + area12 - Rlist(maxerr) if (a /= a1 .and. b /= b2) then if (resas1 /= error1 .and. resas2 /= error2) then ! test for roundoff error. if (abs(Rlist(maxerr) - area12) & < 0.1e-4_wp*abs(area12) .and. & erro12 >= 0.99_wp*errmax) iroff1 = iroff1 + 1 if (Last > 10 .and. erro12 > errmax) & iroff2 = iroff2 + 1 end if end if Rlist(maxerr) = area1 Rlist(Last) = area2 ! test on accuracy. errbnd = max(Epsabs, Epsrel*abs(area)) if (errsum > errbnd) then ! set error flag in the case that the number of interval ! bisections exceeds limit. if (Last == Limit) Ier = 1 ! set error flag in the case of roundoff error. if (iroff1 >= 6 .or. iroff2 >= 20) Ier = 2 ! set error flag in the case of bad integrand behaviour ! at interior points of integration range. if (max(abs(a1), abs(b2)) & <= (1.0_wp + 100.0_wp*epmach) & *(abs(a2) + 1000.0_wp*uflow)) Ier = 3 end if ! append the newly-created intervals to the list. if (error2 > error1) then Alist(maxerr) = a2 Alist(Last) = a1 Blist(Last) = b1 Rlist(maxerr) = area2 Rlist(Last) = area1 Elist(maxerr) = error2 Elist(Last) = error1 else Alist(Last) = a2 Blist(maxerr) = b1 Blist(Last) = b2 Elist(maxerr) = error1 Elist(Last) = error2 end if ! call subroutine dqpsrt to maintain the descending ordering ! in the list of error estimates and select the subinterval ! with largest error estimate (to be bisected next). call dqpsrt(Limit, Last, maxerr, errmax, Elist, Iord, nrmax) ! ***jump out of do-loop if (Ier /= 0 .or. errsum <= errbnd) exit end do ! compute final result. Result = 0.0_wp do k = 1, Last Result = Result + Rlist(k) end do Abserr = errsum end if end if end subroutine dqawse