estimate 1D integral with special singular weight functions using a 15 point gauss-kronrod quadrature rule
to compute i = integral of f*w
over (a,b)
, with error
estimate j = integral of abs(f*w)
over (a,b)
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
procedure(func) | :: | f |
function subprogram defining the integrand function |
|||
procedure(weight_func) | :: | w |
function subprogram defining the integrand weight function |
|||
real(kind=wp), | intent(in) | :: | p1 |
parameter in the weight function |
||
real(kind=wp), | intent(in) | :: | p2 |
parameter in the weight function |
||
real(kind=wp), | intent(in) | :: | p3 |
parameter in the weight function |
||
real(kind=wp), | intent(in) | :: | p4 |
parameter in the weight function |
||
integer, | intent(in) | :: | Kp |
key for indicating the type of weight function |
||
real(kind=wp), | intent(in) | :: | a |
lower limit of integration |
||
real(kind=wp), | intent(in) | :: | b |
upper limit of integration |
||
real(kind=wp), | intent(out) | :: | Result |
approximation to the integral i
|
||
real(kind=wp), | intent(out) | :: | Abserr |
estimate of the modulus of the absolute error,
which should equal or exceed |
||
real(kind=wp), | intent(out) | :: | Resabs |
approximation to the integral of |
||
real(kind=wp), | intent(out) | :: | Resasc |
approximation to the integral of |
subroutine dqk15w(f, w, p1, p2, p3, p4, Kp, a, b, Result, Abserr, Resabs, & Resasc) implicit none procedure(func) :: f !! function subprogram defining the integrand function `f(x)`. procedure(weight_func) :: w !! function subprogram defining the integrand weight function `w(x)`. real(wp), intent(in) :: p1 !! parameter in the weight function real(wp), intent(in) :: p2 !! parameter in the weight function real(wp), intent(in) :: p3 !! parameter in the weight function real(wp), intent(in) :: p4 !! parameter in the weight function integer, intent(in) :: Kp !! key for indicating the type of weight function real(wp), intent(in) :: a !! lower limit of integration real(wp), intent(in) :: b !! upper limit of integration real(wp), intent(out) :: Result !! approximation to the integral i !! `result` is computed by applying the 15-point !! kronrod rule (resk) obtained by optimal addition !! of abscissae to the 7-point gauss rule (resg). real(wp), intent(out) :: Abserr !! estimate of the modulus of the absolute error, !! which should equal or exceed `abs(i-result)` real(wp), intent(out) :: Resabs !! approximation to the integral of `abs(f)` real(wp), intent(out) :: Resasc !! approximation to the integral of `abs(f-i/(b-a))` real(wp) :: absc1, absc2, dhlgth, fc, fsum, fv1(7), fv2(7) integer :: j, jtw, jtwm1 real(wp) :: centr !! mid point of the interval real(wp) :: hlgth !! half-length of the interval real(wp) :: absc !! abscissa real(wp) :: fval1 !! function value real(wp) :: fval2 !! function value real(wp) :: resg !! result of the 7-point gauss formula real(wp) :: resk !! result of the 15-point kronrod formula real(wp) :: reskh !! approximation to the mean value of f*w over `(a,b)`, i.e. to `i/(b-a)` ! the abscissae and weights are given for the interval (-1,1). ! because of symmetry only the positive abscissae and their ! corresponding weights are given. real(wp), dimension(8), parameter :: xgk = [ & 9.91455371120812639206854697526328516642e-1_wp, & 9.49107912342758524526189684047851262401e-1_wp, & 8.64864423359769072789712788640926201211e-1_wp, & 7.41531185599394439863864773280788407074e-1_wp, & 5.86087235467691130294144838258729598437e-1_wp, & 4.05845151377397166906606412076961463347e-1_wp, & 2.07784955007898467600689403773244913480e-1_wp, & 0.00000000000000000000000000000000000000e0_wp] !! abscissae of the 15-point kronrod rule: !! !! * xgk(2), xgk(4), ... abscissae of the 7-point !! gauss rule !! * xgk(1), xgk(3), ... abscissae which are optimally !! added to the 7-point gauss rule real(wp), dimension(8), parameter :: wgk = [ & 2.29353220105292249637320080589695919936e-2_wp, & 6.30920926299785532907006631892042866651e-2_wp, & 1.04790010322250183839876322541518017444e-1_wp, & 1.40653259715525918745189590510237920400e-1_wp, & 1.69004726639267902826583426598550284106e-1_wp, & 1.90350578064785409913256402421013682826e-1_wp, & 2.04432940075298892414161999234649084717e-1_wp, & 2.09482141084727828012999174891714263698e-1_wp] !! weights of the 15-point kronrod rule real(wp), dimension(4), parameter :: wg = [ & 1.29484966168869693270611432679082018329e-1_wp, & 2.79705391489276667901467771423779582487e-1_wp, & 3.81830050505118944950369775488975133878e-1_wp, & 4.17959183673469387755102040816326530612e-1_wp] !! weights of the 7-point gauss rule centr = 0.5_wp*(a + b) hlgth = 0.5_wp*(b - a) dhlgth = abs(hlgth) ! compute the 15-point kronrod approximation to the ! integral, and estimate the error. fc = f(centr)*w(centr, p1, p2, p3, p4, Kp) resg = wg(4)*fc resk = wgk(8)*fc Resabs = abs(resk) do j = 1, 3 jtw = j*2 absc = hlgth*xgk(jtw) absc1 = centr - absc absc2 = centr + absc fval1 = f(absc1)*w(absc1, p1, p2, p3, p4, Kp) fval2 = f(absc2)*w(absc2, p1, p2, p3, p4, Kp) fv1(jtw) = fval1 fv2(jtw) = fval2 fsum = fval1 + fval2 resg = resg + wg(j)*fsum resk = resk + wgk(jtw)*fsum Resabs = Resabs + wgk(jtw)*(abs(fval1) + abs(fval2)) end do do j = 1, 4 jtwm1 = j*2 - 1 absc = hlgth*xgk(jtwm1) absc1 = centr - absc absc2 = centr + absc fval1 = f(absc1)*w(absc1, p1, p2, p3, p4, Kp) fval2 = f(absc2)*w(absc2, p1, p2, p3, p4, Kp) fv1(jtwm1) = fval1 fv2(jtwm1) = fval2 fsum = fval1 + fval2 resk = resk + wgk(jtwm1)*fsum Resabs = Resabs + wgk(jtwm1)*(abs(fval1) + abs(fval2)) end do reskh = resk*0.5_wp Resasc = wgk(8)*abs(fc - reskh) do j = 1, 7 Resasc = Resasc + wgk(j) & *(abs(fv1(j) - reskh) + abs(fv2(j) - reskh)) end do Result = resk*hlgth Resabs = Resabs*dhlgth Resasc = Resasc*dhlgth Abserr = abs((resk - resg)*hlgth) if (Resasc /= 0.0_wp .and. Abserr /= 0.0_wp) & Abserr = Resasc*min(1.0_wp, (200.0_wp*Abserr/Resasc)**1.5_wp) if (Resabs > uflow/(50.0_wp*epmach)) & Abserr = max((epmach*50.0_wp)*Resabs, Abserr) end subroutine dqk15w