Equation of the origins, given the classical NPB matrix and the quantity s.
Status: support routine.
The equation of the origins is the distance between the true equinox and the celestial intermediate origin and, equivalently, the difference between Earth rotation angle and Greenwich apparent sidereal time (ERA-GST). It comprises the precession (since J2000.0) in right ascension plus the equation of the equinoxes (including the small correction terms).
The algorithm is from Wallace & Capitaine (2006).
Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855
Wallace, P. & Capitaine, N., 2006, Astron.Astrophys. 459, 981
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in), | dimension(3,3) | :: | rnpb | classical nutation x precession x bias matrix |
|
real(kind=wp), | intent(in) | :: | s | the quantity s (the CIO locator) |
the equation of the origins in radians.
function EORS ( rnpb, s ) result(res)
implicit none
real(wp),dimension(3,3),intent(in) :: rnpb !! classical nutation x precession x bias matrix
real(wp),intent(in) :: s !! the quantity s (the CIO locator)
real(wp) :: res !! the equation of the origins in radians.
real(wp) :: x, ax, xs, ys, zs, p, q
! Evaluate Wallace & Capitaine (2006) expression (16).
x = rnpb(3,1)
ax = x / ( 1.0_wp + rnpb(3,3) )
xs = 1.0_wp - ax*x
ys = -ax*rnpb(3,2)
zs = -x
p = rnpb(1,1)*xs + rnpb(1,2)*ys + rnpb(1,3)*zs
q = rnpb(2,1)*xs + rnpb(2,2)*ys + rnpb(2,3)*zs
if ( p/=0.0_wp .or. q/=0.0_wp ) then
res = s - atan2 ( q, p )
else
res = s
end if
end function EORS