Long-term precession matrix.
Status: support routine.
The matrix is in the sense
P_date = RP x P_J2000,
where P_J2000 is a vector with respect to the J2000.0 mean equator and equinox and P_date is the same vector with respect to the equator and equinox of epoch EPJ.
The Vondrak et al. (2011, 2012) 400 millennia precession model agrees with the IAU 2006 precession at J2000.0 and stays within 100 microarcseconds during the 20th and 21st centuries. It is accurate to a few arcseconds throughout the historical period, worsening to a few tenths of a degree at the end of the +/- 200,000 year time span.
Vondrak, J., Capitaine, N. and Wallace, P., 2011, New precession expressions, valid for long time intervals, Astron.Astrophys. 534, A22
Vondrak, J., Capitaine, N. and Wallace, P., 2012, New precession expressions, valid for long time intervals (Corrigendum), Astron.Astrophys. 541, C1
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | epj | Julian epoch (TT) |
||
real(kind=wp), | intent(out), | dimension(3,3) | :: | rp | precession matrix, J2000.0 to date |
subroutine LTP ( epj, rp )
implicit none
real(wp),intent(in) :: epj !! Julian epoch (TT)
real(wp),dimension(3,3),intent(out) :: rp !! precession matrix, J2000.0 to date
integer :: i
real(wp) :: peqr(3), pecl(3), v(3), w, eqx(3)
! Equator pole (bottom row of matrix).
call LTPEQU ( epj, peqr )
! Ecliptic pole.
call LTPECL ( epj, pecl )
! Equinox (top row of matrix).
call PXP ( peqr, pecl, v )
call PN ( v, w, eqx )
! Middle row of matrix.
call PXP ( peqr, eqx, v )
! Assemble the matrix.
do i=1,3
rp(1,i) = eqx(i)
rp(2,i) = v(i)
rp(3,i) = peqr(i)
end do
end subroutine LTP