LTPEQU Subroutine

public subroutine LTPEQU(epj, veq)

Long-term precession of the equator.

Status: support routine.

Notes

  1. The returned vector is with respect to the J2000.0 mean equator and equinox.

  2. The Vondrak et al. (2011, 2012) 400 millennia precession model agrees with the IAU 2006 precession at J2000.0 and stays within 100 microarcseconds during the 20th and 21st centuries. It is accurate to a few arcseconds throughout the historical period, worsening to a few tenths of a degree at the end of the +/- 200,000 year time span.

References

  • Vondrak, J., Capitaine, N. and Wallace, P., 2011, New precession expressions, valid for long time intervals, Astron.Astrophys. 534, A22

  • Vondrak, J., Capitaine, N. and Wallace, P., 2012, New precession expressions, valid for long time intervals (Corrigendum), Astron.Astrophys. 541, C1

History

  • IAU SOFA revision: 2016 February 9

Arguments

TypeIntentOptionalAttributesName
real(kind=wp), intent(in) :: epj

Julian epoch (TT)

real(kind=wp), intent(out), dimension(3):: veq

equator pole unit vector


Called by

proc~~ltpequ~~CalledByGraph proc~ltpequ LTPEQU proc~ltecm LTECM proc~ltecm->proc~ltpequ proc~ltp LTP proc~ltp->proc~ltpequ proc~lteceq LTECEQ proc~lteceq->proc~ltecm proc~ltpb LTPB proc~ltpb->proc~ltp proc~lteqec LTEQEC proc~lteqec->proc~ltecm

Contents

Source Code


Source Code

    subroutine LTPEQU ( epj, veq )

    implicit none

    real(wp),intent(in) :: epj !! Julian epoch (TT)
    real(wp),dimension(3),intent(out) :: veq !! equator pole unit vector

    !  Number of polynomial terms
    integer,parameter :: npol = 4

    !  Number of periodic terms
    integer,parameter :: nper = 14

    !  Miscellaneous
    integer :: i, j
    real(wp) :: t, x, y, w, a, s, c

    !  Polynomial and periodic coefficients

    !  Polynomials
    real(wp),dimension(npol,2),parameter :: xypol = reshape([&
           +5453.282155_wp, &
              +0.4252841_wp, &
              -0.00037173_wp, &
              -0.000000152_wp, &
          -73750.930350_wp, &
              -0.7675452_wp, &
              -0.00018725_wp, &
              +0.000000231_wp ], [npol,2])

    !  Periodics
    real(wp),dimension(5,nper),parameter :: xyper = reshape([&
       256.75_wp,   -819.940624_wp,  75004.344875_wp, &
                   81491.287984_wp,   1558.515853_wp, &
       708.15_wp,  -8444.676815_wp,    624.033993_wp, &
                     787.163481_wp,   7774.939698_wp, &
       274.20_wp,   2600.009459_wp,   1251.136893_wp, &
                    1251.296102_wp,  -2219.534038_wp, &
       241.45_wp,   2755.175630_wp,  -1102.212834_wp, &
                   -1257.950837_wp,  -2523.969396_wp, &
      2309.00_wp,   -167.659835_wp,  -2660.664980_wp, &
                   -2966.799730_wp,    247.850422_wp, &
       492.20_wp,    871.855056_wp,    699.291817_wp, &
                     639.744522_wp,   -846.485643_wp, &
       396.10_wp,     44.769698_wp,    153.167220_wp, &
                     131.600209_wp,  -1393.124055_wp, &
       288.90_wp,   -512.313065_wp,   -950.865637_wp, &
                    -445.040117_wp,    368.526116_wp, &
       231.10_wp,   -819.415595_wp,    499.754645_wp, &
                     584.522874_wp,    749.045012_wp, &
      1610.00_wp,   -538.071099_wp,   -145.188210_wp, &
                     -89.756563_wp,    444.704518_wp, &
       620.00_wp,   -189.793622_wp,    558.116553_wp, &
                     524.429630_wp,    235.934465_wp, &
       157.87_wp,   -402.922932_wp,    -23.923029_wp, &
                     -13.549067_wp,    374.049623_wp, &
       220.30_wp,    179.516345_wp,   -165.405086_wp, &
                    -210.157124_wp,   -171.330180_wp, &
      1200.00_wp,     -9.814756_wp,      9.344131_wp, &
                     -44.919798_wp,    -22.899655_wp ], [5,nper])

    !  Centuries since J2000.
    t = (epj-2000.0_wp)/100.0_wp

    !  Initialize X and Y accumulators.
    x = 0.0_wp
    y = 0.0_wp

    !  Periodic terms.
    w = d2pi*t
    do i=1,nper
       a = w/xyper(1,i)
       s = sin(a)
       c = cos(a)
       x = x + c*xyper(2,i) + s*xyper(4,i)
       y = y + c*xyper(3,i) + s*xyper(5,i)
    end do

    !  Polynomial terms.
    w = 1.0_wp
    do i=1,npol
       x = x + xypol(i,1)*w
       y = y + xypol(i,2)*w
       w = w*t
    end do

    !  X and Y (direction cosines).
    x = x*das2r
    y = y*das2r

    !  Form the equator pole vector.
    veq(1) = x
    veq(2) = y
    veq(3) = sqrt(max(1.0_wp-x*x-y*y,0.0_wp))

    end subroutine LTPEQU