S06 Function

public function S06(date1, date2, x, y) result(s)

The CIO locator s, positioning the Celestial Intermediate Origin on the equator of the Celestial Intermediate Pole, given the CIP's X,Y coordinates. Compatible with IAU 2006/2000A precession-nutation.

Status: canonical model.

Notes

  1. The TT date DATE1+DATE2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD(TT)=2450123.7 could be expressed in any of these ways, among others:

        DATE1          DATE2
    
     2450123.7D0        0D0        (JD method)
      2451545D0      -1421.3D0     (J2000 method)
     2400000.5D0     50123.2D0     (MJD method)
     2450123.5D0       0.2D0       (date & time method)
    

    The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience.

  2. The CIO locator s is the difference between the right ascensions of the same point in two systems: the two systems are the GCRS and the CIP,CIO, and the point is the ascending node of the CIP equator. The quantity s remains below 0.1 arcsecond throughout 1900-2100.

  3. The series used to compute s is in fact for s+XY/2, where X and Y are the x and y components of the CIP unit vector; this series is more compact than a direct series for s would be. This routine requires X,Y to be supplied by the caller, who is responsible for providing values that are consistent with the supplied date.

  4. The model is consistent with the "P03" precession (Capitaine et al. 2003), adopted by IAU 2006 Resolution 1, 2006, and the IAU 2000A nutation (with P03 adjustments).

References

  • Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astron. Astrophys. 432, 355

  • McCarthy, D.D., Petit, G. (eds.) 2004, IERS Conventions (2003), IERS Technical Note No. 32, BKG

History

  • IAU SOFA revision: 2009 December 15

Arguments

TypeIntentOptionalAttributesName
real(kind=wp), intent(in) :: date1

TT as a 2-part Julian Date (Note 1)

real(kind=wp), intent(in) :: date2

TT as a 2-part Julian Date (Note 1)

real(kind=wp), intent(in) :: x

CIP coordinates (Note 3)

real(kind=wp), intent(in) :: y

CIP coordinates (Note 3)

Return Value real(kind=wp)

the CIO locator s in radians (Note 2)


Calls

proc~~s06~~CallsGraph proc~s06 S06 proc~faom03 FAOM03 proc~s06->proc~faom03 proc~falp03 FALP03 proc~s06->proc~falp03 proc~fae03 FAE03 proc~s06->proc~fae03 proc~fal03 FAL03 proc~s06->proc~fal03 proc~faf03 FAF03 proc~s06->proc~faf03 proc~fad03 FAD03 proc~s06->proc~fad03 proc~fave03 FAVE03 proc~s06->proc~fave03 proc~fapa03 FAPA03 proc~s06->proc~fapa03

Called by

proc~~s06~~CalledByGraph proc~s06 S06 proc~s06a S06A proc~s06a->proc~s06 proc~xys06a XYS06A proc~xys06a->proc~s06 proc~c2i06a C2I06A proc~c2i06a->proc~s06 proc~apco13 APCO13 proc~apco13->proc~s06 proc~gst06 GST06 proc~gst06->proc~s06 proc~apci13 APCI13 proc~apci13->proc~s06 proc~eo06a EO06A proc~eo06a->proc~s06 proc~atco13 ATCO13 proc~atco13->proc~apco13 proc~atci13 ATCI13 proc~atci13->proc~apci13 proc~gst06a GST06A proc~gst06a->proc~gst06 proc~atic13 ATIC13 proc~atic13->proc~apci13 proc~c2t06a C2T06A proc~c2t06a->proc~c2i06a proc~atoc13 ATOC13 proc~atoc13->proc~apco13 proc~ee06a EE06A proc~ee06a->proc~gst06a

Contents

Source Code

S06

Source Code

    function S06 ( date1, date2, x, y ) result(s)

    implicit none

    real(wp),intent(in) :: date1 !! TT as a 2-part Julian Date (Note 1)
    real(wp),intent(in) :: date2 !! TT as a 2-part Julian Date (Note 1)
    real(wp),intent(in) :: x !! CIP coordinates (Note 3)
    real(wp),intent(in) :: y !! CIP coordinates (Note 3)
    real(wp) :: s !! the CIO locator s in radians (Note 2)

    !  Time since J2000.0, in Julian centuries
    real(wp) :: t

    !  Miscellaneous
    integer :: i, j
    real(wp) :: a, s0, s1, s2, s3, s4, s5

    !  Fundamental arguments
    real(wp) :: fa(8)

    !  ---------------------
    !  The series for s+XY/2
    !  ---------------------

    !  Number of terms in the series
    integer,parameter :: nsp = 6
    integer,parameter :: ns0 = 33
    integer,parameter :: ns1 = 3
    integer,parameter :: ns2 = 25
    integer,parameter :: ns3 = 4
    integer,parameter :: ns4 = 1

    !  Polynomial coefficients
    real(wp),dimension(nsp),parameter :: sp = [&
                  94.0e-6_wp, &
               3808.65e-6_wp, &
               -122.68e-6_wp, &
             -72574.11e-6_wp, &
                 27.98e-6_wp, &
                 15.62e-6_wp ]

    !  Coefficients of l,l',F,D,Om,LVe,LE,pA

    !  Argument coefficients for t^0
    integer,dimension(8, ns0),parameter :: ks0 = reshape([&
      0,  0,  0,  0,  1,  0,  0,  0, &
      0,  0,  0,  0,  2,  0,  0,  0, &
      0,  0,  2, -2,  3,  0,  0,  0, &
      0,  0,  2, -2,  1,  0,  0,  0, &
      0,  0,  2, -2,  2,  0,  0,  0, &
      0,  0,  2,  0,  3,  0,  0,  0, &
      0,  0,  2,  0,  1,  0,  0,  0, &
      0,  0,  0,  0,  3,  0,  0,  0, &
      0,  1,  0,  0,  1,  0,  0,  0, &
      0,  1,  0,  0, -1,  0,  0,  0, &
      1,  0,  0,  0, -1,  0,  0,  0, &
      1,  0,  0,  0,  1,  0,  0,  0, &
      0,  1,  2, -2,  3,  0,  0,  0, &
      0,  1,  2, -2,  1,  0,  0,  0, &
      0,  0,  4, -4,  4,  0,  0,  0, &
      0,  0,  1, -1,  1, -8, 12,  0, &
      0,  0,  2,  0,  0,  0,  0,  0, &
      0,  0,  2,  0,  2,  0,  0,  0, &
      1,  0,  2,  0,  3,  0,  0,  0, &
      1,  0,  2,  0,  1,  0,  0,  0, &
      0,  0,  2, -2,  0,  0,  0,  0, &
      0,  1, -2,  2, -3,  0,  0,  0, &
      0,  1, -2,  2, -1,  0,  0,  0, &
      0,  0,  0,  0,  0,  8,-13, -1, &
      0,  0,  0,  2,  0,  0,  0,  0, &
      2,  0, -2,  0, -1,  0,  0,  0, &
      0,  1,  2, -2,  2,  0,  0,  0, &
      1,  0,  0, -2,  1,  0,  0,  0, &
      1,  0,  0, -2, -1,  0,  0,  0, &
      0,  0,  4, -2,  4,  0,  0,  0, &
      0,  0,  2, -2,  4,  0,  0,  0, &
      1,  0, -2,  0, -3,  0,  0,  0, &
      1,  0, -2,  0, -1,  0,  0,  0  ],[8,ns0])

    !  Argument coefficients for t^1
    integer,dimension(8, ns1),parameter :: ks1 = reshape([&
      0,  0,  0,  0,  2,  0,  0,  0, &
      0,  0,  0,  0,  1,  0,  0,  0, &
      0,  0,  2, -2,  3,  0,  0,  0 ],[8,ns1])

    !  Argument coefficients for t^2
    integer,dimension(8, ns2),parameter :: ks2 = reshape([&
      0,  0,  0,  0,  1,  0,  0,  0, &
      0,  0,  2, -2,  2,  0,  0,  0, &
      0,  0,  2,  0,  2,  0,  0,  0, &
      0,  0,  0,  0,  2,  0,  0,  0, &
      0,  1,  0,  0,  0,  0,  0,  0, &
      1,  0,  0,  0,  0,  0,  0,  0, &
      0,  1,  2, -2,  2,  0,  0,  0, &
      0,  0,  2,  0,  1,  0,  0,  0, &
      1,  0,  2,  0,  2,  0,  0,  0, &
      0,  1, -2,  2, -2,  0,  0,  0, &
      1,  0,  0, -2,  0,  0,  0,  0, &
      0,  0,  2, -2,  1,  0,  0,  0, &
      1,  0, -2,  0, -2,  0,  0,  0, &
      0,  0,  0,  2,  0,  0,  0,  0, &
      1,  0,  0,  0,  1,  0,  0,  0, &
      1,  0, -2, -2, -2,  0,  0,  0, &
      1,  0,  0,  0, -1,  0,  0,  0, &
      1,  0,  2,  0,  1,  0,  0,  0, &
      2,  0,  0, -2,  0,  0,  0,  0, &
      2,  0, -2,  0, -1,  0,  0,  0, &
      0,  0,  2,  2,  2,  0,  0,  0, &
      2,  0,  2,  0,  2,  0,  0,  0, &
      2,  0,  0,  0,  0,  0,  0,  0, &
      1,  0,  2, -2,  2,  0,  0,  0, &
      0,  0,  2,  0,  0,  0,  0,  0 ],[8,ns2])

    !  Argument coefficients for t^3
    integer,dimension(8, ns3),parameter :: ks3 = reshape([&
      0,  0,  0,  0,  1,  0,  0,  0, &
      0,  0,  2, -2,  2,  0,  0,  0, &
      0,  0,  2,  0,  2,  0,  0,  0, &
      0,  0,  0,  0,  2,  0,  0,  0 ],[8,ns3])

    !  Argument coefficients for t^4
    integer,dimension(8, ns4),parameter :: ks4 = reshape([&
      0,  0,  0,  0,  1,  0,  0,  0 ],[8,ns4])

    !  Sine and cosine coefficients

    !  Sine and cosine coefficients for t^0
    real(wp),dimension(2,ns0),parameter :: ss0 = reshape([&
                -2640.73e-6_wp,          +0.39e-6_wp, &
                  -63.53e-6_wp,          +0.02e-6_wp, &
                  -11.75e-6_wp,          -0.01e-6_wp, &
                  -11.21e-6_wp,          -0.01e-6_wp, &
                   +4.57e-6_wp,           0.00e-6_wp, &
                   -2.02e-6_wp,           0.00e-6_wp, &
                   -1.98e-6_wp,           0.00e-6_wp, &
                   +1.72e-6_wp,           0.00e-6_wp, &
                   +1.41e-6_wp,          +0.01e-6_wp, &
                   +1.26e-6_wp,          +0.01e-6_wp, &
                   +0.63e-6_wp,           0.00e-6_wp, &
                   +0.63e-6_wp,           0.00e-6_wp, &
                   -0.46e-6_wp,           0.00e-6_wp, &
                   -0.45e-6_wp,           0.00e-6_wp, &
                   -0.36e-6_wp,           0.00e-6_wp, &
                   +0.24e-6_wp,          +0.12e-6_wp, &
                   -0.32e-6_wp,           0.00e-6_wp, &
                   -0.28e-6_wp,           0.00e-6_wp, &
                   -0.27e-6_wp,           0.00e-6_wp, &
                   -0.26e-6_wp,           0.00e-6_wp, &
                   +0.21e-6_wp,           0.00e-6_wp, &
                   -0.19e-6_wp,           0.00e-6_wp, &
                   -0.18e-6_wp,           0.00e-6_wp, &
                   +0.10e-6_wp,          -0.05e-6_wp, &
                   -0.15e-6_wp,           0.00e-6_wp, &
                   +0.14e-6_wp,           0.00e-6_wp, &
                   +0.14e-6_wp,           0.00e-6_wp, &
                   -0.14e-6_wp,           0.00e-6_wp, &
                   -0.14e-6_wp,           0.00e-6_wp, &
                   -0.13e-6_wp,           0.00e-6_wp, &
                   +0.11e-6_wp,           0.00e-6_wp, &
                   -0.11e-6_wp,           0.00e-6_wp, &
                   -0.11e-6_wp,           0.00e-6_wp ],[2,ns0])

    !  Sine and cosine coefficients for t^1
    real(wp),dimension(2,ns1),parameter :: ss1 = reshape([&
                   -0.07e-6_wp,          +3.57e-6_wp, &
                   +1.73e-6_wp,          -0.03e-6_wp, &
                    0.00e-6_wp,          +0.48e-6_wp ],[2,ns1])

    !  Sine and cosine coefficients for t^2
    real(wp),dimension(2,ns2),parameter :: ss2 = reshape([&
                 +743.52e-6_wp,          -0.17e-6_wp, &
                  +56.91e-6_wp,          +0.06e-6_wp, &
                   +9.84e-6_wp,          -0.01e-6_wp, &
                   -8.85e-6_wp,          +0.01e-6_wp, &
                   -6.38e-6_wp,          -0.05e-6_wp, &
                   -3.07e-6_wp,           0.00e-6_wp, &
                   +2.23e-6_wp,           0.00e-6_wp, &
                   +1.67e-6_wp,           0.00e-6_wp, &
                   +1.30e-6_wp,           0.00e-6_wp, &
                   +0.93e-6_wp,           0.00e-6_wp, &
                   +0.68e-6_wp,           0.00e-6_wp, &
                   -0.55e-6_wp,           0.00e-6_wp, &
                   +0.53e-6_wp,           0.00e-6_wp, &
                   -0.27e-6_wp,           0.00e-6_wp, &
                   -0.27e-6_wp,           0.00e-6_wp, &
                   -0.26e-6_wp,           0.00e-6_wp, &
                   -0.25e-6_wp,           0.00e-6_wp, &
                   +0.22e-6_wp,           0.00e-6_wp, &
                   -0.21e-6_wp,           0.00e-6_wp, &
                   +0.20e-6_wp,           0.00e-6_wp, &
                   +0.17e-6_wp,           0.00e-6_wp, &
                   +0.13e-6_wp,           0.00e-6_wp, &
                   -0.13e-6_wp,           0.00e-6_wp, &
                   -0.12e-6_wp,           0.00e-6_wp, &
                   -0.11e-6_wp,           0.00e-6_wp ],[2,ns2])

    !  Sine and cosine coefficients for t^3
    real(wp),dimension(2,ns3),parameter :: ss3 = reshape([&
                   +0.30e-6_wp,         -23.42e-6_wp, &
                   -0.03e-6_wp,          -1.46e-6_wp, &
                   -0.01e-6_wp,          -0.25e-6_wp, &
                    0.00e-6_wp,          +0.23e-6_wp ],[2,ns3])

    !  Sine and cosine coefficients for t^4
    real(wp),dimension(2,ns4),parameter :: ss4 = reshape([&
                   -0.26e-6_wp,          -0.01e-6_wp ],[2,ns4])

    !  Interval between fundamental epoch J2000.0 and current date (JC).
    t = ( ( date1-dj00 ) + date2 ) / djc

    !  Fundamental Arguments (from IERS Conventions 2003)

    !  Mean anomaly of the Moon.
    fa(1) = FAL03 ( t )

    !  Mean anomaly of the Sun.
    fa(2) = FALP03 ( t )

    !  Mean longitude of the Moon minus that of the ascending node.
    fa(3) = FAF03 ( t )

    !  Mean elongation of the Moon from the Sun.
    fa(4) = FAD03 ( t )

    !  Mean longitude of the ascending node of the Moon.
    fa(5) = FAOM03 ( t )

    !  Mean longitude of Venus.
    fa(6) = FAVE03 ( t )

    !  Mean longitude of Earth.
    fa(7) = FAE03 ( t )

    !  General precession in longitude.
    fa(8) = FAPA03 ( t )

    !  Evaluate s.
    s0 = sp(1)
    s1 = sp(2)
    s2 = sp(3)
    s3 = sp(4)
    s4 = sp(5)
    s5 = sp(6)

    do i = ns0,1,-1
       a = 0.0_wp
       do j=1,8
          a = a + real(ks0(j,i),wp)*fa(j)
       end do
       s0 = s0 + ( ss0(1,i)*sin(a) + ss0(2,i)*cos(a) )
    end do

    do i = ns1,1,-1
       a = 0.0_wp
       do j=1,8
          a = a + real(ks1(j,i),wp)*fa(j)
       end do
       s1 = s1 + ( ss1(1,i)*sin(a) + ss1(2,i)*cos(a) )
    end do

    do i = ns2,1,-1
       a = 0.0_wp
       do j=1,8
          a = a + real(ks2(j,i),wp)*fa(j)
       end do
       s2 = s2 + ( ss2(1,i)*sin(a) + ss2(2,i)*cos(a) )
    end do

    do i = ns3,1,-1
       a = 0.0_wp
       do j=1,8
          a = a + real(ks3(j,i),wp)*fa(j)
       end do
       s3 = s3 + ( ss3(1,i)*sin(a) + ss3(2,i)*cos(a) )
    end do

    do i = ns4,1,-1
       a = 0.0_wp
       do j=1,8
          a = a + real(ks4(j,i),wp)*fa(j)
       end do
       s4 = s4 + ( ss4(1,i)*sin(a) + ss4(2,i)*cos(a) )
    end do

    s = ( s0 + &
        ( s1 + &
        ( s2 + &
        ( s3 + &
        ( s4 + &
          s5 * t ) * t ) * t ) * t ) * t ) * das2r - x*y/2.0_wp

    end function S06