LINPACK support routines for LBFGSB. These have been refactored into modern Fortran.
dpofa factors a real symmetric positive definite matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(inout) | :: | a(lda,*) |
Dimension |
||
integer, | intent(in) | :: | lda |
the leading dimension of the array |
||
integer, | intent(in) | :: | n |
the order of the matrix a. |
||
integer, | intent(out) | :: | info |
|
dtrsl solves systems of the form
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | t(ldt,*) |
t contains the matrix of the system. the zero elements of the matrix are not referenced, and the corresponding elements of the array can be used to store other information. |
||
integer, | intent(in) | :: | ldt |
the leading dimension of the array t. |
||
integer, | intent(in) | :: | n |
the order of the system. |
||
real(kind=wp), | intent(inout) | :: | b(*) |
On entry: the right hand side of the system. On return: the solution, if info == 0. otherwise b is unaltered. |
||
integer, | intent(in) | :: | job |
job specifies what kind of system is to be solved. if job is: |
||
integer, | intent(out) | :: | info |
info contains zero if the system is nonsingular. otherwise info contains the index of the first zero diagonal element of t. |