rk_module.f90 Source File


This file depends on

sourcefile~~rk_module.f90~~EfferentGraph sourcefile~rk_module.f90 rk_module.f90 sourcefile~brent_module.f90 brent_module.f90 sourcefile~rk_module.f90->sourcefile~brent_module.f90 sourcefile~kind_module.f90 kind_module.F90 sourcefile~rk_module.f90->sourcefile~kind_module.f90 sourcefile~numbers_module.f90 numbers_module.f90 sourcefile~rk_module.f90->sourcefile~numbers_module.f90 sourcefile~brent_module.f90->sourcefile~kind_module.f90 sourcefile~brent_module.f90->sourcefile~numbers_module.f90 sourcefile~numbers_module.f90->sourcefile~kind_module.f90

Files dependent on this one

sourcefile~~rk_module.f90~~AfferentGraph sourcefile~rk_module.f90 rk_module.f90 sourcefile~fortran_astrodynamics_toolkit.f90 fortran_astrodynamics_toolkit.f90 sourcefile~fortran_astrodynamics_toolkit.f90->sourcefile~rk_module.f90 sourcefile~halo_orbit_module.f90 halo_orbit_module.f90 sourcefile~fortran_astrodynamics_toolkit.f90->sourcefile~halo_orbit_module.f90 sourcefile~halo_orbit_module.f90->sourcefile~rk_module.f90

Source Code

!*****************************************************************************************
!> author: Jacob Williams
!
!  Runge-Kutta integration.

    module rk_module

    use kind_module,       only: wp
    use numbers_module,    only: zero

    implicit none

    private

    type,abstract,public :: rk_class

        !! main integration class:

        integer :: n = 0  !! user specified number of variables
        procedure(deriv_func),pointer  :: f      => null()  !! user-specified derivative function
        procedure(report_func),pointer :: report => null()  !! user-specified report function
        procedure(event_func),pointer  :: g      => null()  !! event function (stop when this is zero)

        contains

        procedure                        :: initialize         !! initialize the class (set n,f, and report)
        procedure,non_overridable,public :: integrate          !! main integration routine
        procedure,non_overridable,public :: integrate_to_event !! integration with event finding
        procedure(step_func),deferred    :: step               !! the step routine for the rk method
        procedure,public                 :: destroy            !! destructor

    end type rk_class

    !extend the abstract class to create an RK4 method:
    ! [all we need to do is set the step function]
    type,extends(rk_class),public :: rk4_class
        !! 4th order Runge-Kutta method.
        contains
        procedure :: step => rk4
    end type rk4_class
    type,extends(rk_class),public :: rk8_10_class
        !! 8th order Runge-Kutta method.
        contains
        procedure :: step => rk8_10
    end type rk8_10_class

    interface

        subroutine deriv_func(me,t,x,xdot)  !! derivative function
        import :: rk_class,wp
        implicit none
            class(rk_class),intent(inout)        :: me
            real(wp),intent(in)                  :: t    !! time
            real(wp),dimension(me%n),intent(in)  :: x    !! state vector
            real(wp),dimension(me%n),intent(out) :: xdot !! derivative of state vector
        end subroutine deriv_func

        subroutine event_func(me,t,x,g)  !! event function
        import :: rk_class,wp
        implicit none
            class(rk_class),intent(inout)        :: me
            real(wp),intent(in)                  :: t !! time
            real(wp),dimension(me%n),intent(in)  :: x !! state vector
            real(wp),intent(out)                 :: g !! g(t,x). The goal is to stop the integration when g=0.
        end subroutine event_func

        subroutine report_func(me,t,x)  !! report function
        import :: rk_class,wp
        implicit none
            class(rk_class),intent(inout)        :: me
            real(wp),intent(in)                  :: t !! time
            real(wp),dimension(me%n),intent(in)  :: x !! state vector
        end subroutine report_func

        subroutine step_func(me,t,x,h,xf)   !! rk step function
        import :: rk_class,wp
        implicit none
            class(rk_class),intent(inout)        :: me
            real(wp),intent(in)                  :: t  !! initial time
            real(wp),dimension(me%n),intent(in)  :: x  !! initial state vector
            real(wp),intent(in)                  :: h  !! time step \( |\Delta t| \)
            real(wp),dimension(me%n),intent(out) :: xf !! final state vector
        end subroutine step_func

    end interface

    public :: rk_test !for testing

    contains
!*****************************************************************************************

!*****************************************************************************************
!>
!  Initialize the [[rk_class]].

    subroutine initialize(me,n,f,report,g)

    implicit none

    class(rk_class),intent(inout)   :: me
    integer,intent(in)              :: n       !! number of variables
    procedure(deriv_func)           :: f       !! derivative function
    procedure(report_func),optional :: report  !! for reporting the steps
    procedure(event_func),optional  :: g       !! for stopping at an event

    call me%destroy()

    me%n = n
    me%f => f
    if (present(report)) me%report => report
    if (present(g))      me%g      => g

    end subroutine initialize
!*****************************************************************************************

!*****************************************************************************************
!>
!  Destructor for [[rk_class]].

    subroutine destroy(me)

    implicit none

    class(rk_class),intent(out)   :: me

    end subroutine destroy
!*****************************************************************************************

!*****************************************************************************************
!>
!  Main integration routine for the [[rk_class]].

    subroutine integrate(me,t0,x0,h,tf,xf)

    implicit none

    class(rk_class),intent(inout)        :: me
    real(wp),intent(in)                  :: t0    !! initial time
    real(wp),dimension(me%n),intent(in)  :: x0    !! initial state
    real(wp),intent(in)                  :: h     !! abs(time step)
    real(wp),intent(in)                  :: tf    !! final time
    real(wp),dimension(me%n),intent(out) :: xf    !! final state

    real(wp) :: t,dt,t2
    real(wp),dimension(me%n) :: x
    logical :: last,export

    if (.not. associated(me%f)) error stop 'Error in integrate: f is not associated.'

    export = associated(me%report)

    if (export) call me%report(t0,x0)  !first point

    if (h==zero) then
        xf = x0
    else

        t = t0
        x = x0
        dt = sign(h,tf-t0)  !time step (correct sign)
        do
            t2 = t + dt
            last = ((dt>=zero .and. t2>=tf) .or. &  !adjust last time step
                    (dt<zero .and. t2<=tf))         !
            if (last) dt = tf-t                     !
            call me%step(t,x,dt,xf)
            if (last) exit
            if (export) call me%report(t2,xf)   !intermediate point
            x = xf
            t = t2
        end do

    end if

    if (export) call me%report(tf,xf)   !last point

    end subroutine integrate
!*****************************************************************************************

!*****************************************************************************************
!>
!  Event-finding integration routine for the [[rk_class]].
!  Integrates until g(t,x)=0, or until t=tf (whichever happens first).
!
!@note There are some efficiency improvements that could be made here.
!      This is a work in progress.

    subroutine integrate_to_event(me,t0,x0,h,tmax,tol,tf,xf,gf)

    use brent_module

    implicit none

    class(rk_class),intent(inout)        :: me
    real(wp),intent(in)                  :: t0      !! initial time
    real(wp),dimension(me%n),intent(in)  :: x0      !! initial state
    real(wp),intent(in)                  :: h       !! abs(time step)
    real(wp),intent(in)                  :: tmax    !! max final time if event not located
    real(wp),intent(in)                  :: tol     !! function tolerance for root finding
    real(wp),intent(out)                 :: tf      !! actual final time reached
    real(wp),dimension(me%n),intent(out) :: xf      !! final state (at tf)
    real(wp),intent(out)                 :: gf      !! g value at tf

    !local variables:
    real(wp) :: t,dt,t2,ga,gb,dt_root,dum
    real(wp),dimension(me%n) :: x,g_xf
    logical :: first,last,export
    procedure(report_func),pointer :: report
    type(brent_class) :: solver
    integer :: iflag

    if (.not. associated(me%f)) error stop 'Error in integrate_to_event: f is not associated.'
    if (.not. associated(me%g)) error stop 'Error in integrate_to_event: g is not associated.'
    if (h==zero) error stop 'Error in integrate_to_event: h must not be zero.'

    !If the points are being exported:
    export = associated(me%report)

    !first point:
    if (export) call me%report(t0,x0)

    if (t0==tmax) then
        xf = x0
        tf = t0
        call me%g(t0,x0,gf)
    else

        first = .true.
        t = t0
        x = x0
        call me%g(t0,x0,ga)     !evaluate event function
        dt = sign(h,tmax-t0)    !time step (correct sign)

        do

            t2 = t + dt
            last = ((dt>=zero .and. t2>=tmax) .or. &  !adjust last time step
                    (dt<zero .and. t2<=tmax))         !
            if (last) then
                dt = tmax-t
                t2 = tmax
            end if
            call me%step(t,x,dt,xf)
            call me%g(t2,xf,gb)     !evaluate event function

            if (first .and. abs(ga)<=tol) then

                !we ignore a root at t0 after the first step
                if (abs(gb)<=tol) then !check this one since it could have landed on a root
                    gf = gb
                    tf = t2
                    exit
                else
                    if (last) then  !exiting without having found a root
                        tf = t2
                        gf = gb
                        exit
                    end if
                    if (export) call me%report(t2,xf)   !intermediate point
                    x = xf
                    t = t2
                    ga = gb
                end if

            elseif (ga*gb<=zero) then !there is a root somewhere on [t,t+dt]

                !find the root:
                call solver%set_function(solver_func)
                call solver%find_zero(zero,dt,tol,dt_root,dum,iflag,ga,gb)
                t2 = t + dt_root
                gf = solver_func(solver,dt_root)
                tf = t2
                xf = g_xf !computed in the solver function
                exit

            else  !no root yet, continue

                if (last) then  !exiting without having found a root
                    tf = t2
                    gf = gb
                    exit
                end if
                if (export) call me%report(t2,xf)   !intermediate point
                x = xf
                t = t2
                ga = gb

            end if

            if (first) first = .false.

        end do

    end if

    if (export) call me%report(t2,xf)   !last point

    contains

        function solver_func(this,delt) result(g)

        !! root solver function. The input is the dt offset from time t.

        implicit none

        class(brent_class),intent(inout) :: this
        real(wp),intent(in) :: delt  !! from [0 to dt]
        real(wp) :: g

        !take a step from t to t+delt and evaluate g function:
        call me%step(t,x,delt,g_xf)
        call me%g(t+delt,g_xf,g)

        end function solver_func

    end subroutine integrate_to_event
!*****************************************************************************************

!*****************************************************************************************
!>
!  Take one Runge Kutta 4 integration step: `t -> t+h (x -> xf)`

    subroutine rk4(me,t,x,h,xf)

    implicit none

    class(rk4_class),intent(inout)       :: me
    real(wp),intent(in)                  :: t   !! initial time
    real(wp),dimension(me%n),intent(in)  :: x   !! initial state
    real(wp),intent(in)                  :: h   !! time step
    real(wp),dimension(me%n),intent(out) :: xf  !! state at time `t+h`

    !local variables:
    real(wp),dimension(me%n) :: f1,f2,f3,f4
    real(wp) :: h2

    !parameters:
    real(wp),parameter :: half = 0.5_wp
    real(wp),parameter :: six  = 6.0_wp

    h2 = half*h

    call me%f(t,x,f1)
    call me%f(t+h2,x+h2*f1,f2)
    call me%f(t+h2,x+h2*f2,f3)
    call me%f(t+h,x+h*f3,f4)

    xf = x + h*(f1+f2+f2+f3+f3+f4)/six

    end subroutine rk4
!*****************************************************************************************

!*****************************************************************************************
!>
!  Take one Runge Kutta 8 integration step: `t -> t+h (x -> xf)`
!  This is Formula (8-10) from Reference [1].
!
!# Reference
!  1. E. B. Shanks, "[Higher Order Approximations of Runge-Kutta Type](http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650022581.pdf)",
!     NASA Technical Note, NASA TN D-2920, Sept. 1965.

    subroutine rk8_10(me,t,x,h,xf)

    implicit none

    class(rk8_10_class),intent(inout)    :: me
    real(wp),intent(in)                  :: t   !! initial time
    real(wp),dimension(me%n),intent(in)  :: x   !! initial state
    real(wp),intent(in)                  :: h   !! time step
    real(wp),dimension(me%n),intent(out) :: xf  !! state at time `t+h`

    !local variables:
    real(wp),dimension(me%n) :: f0,f1,f2,f3,f4,f5,f6,f7,f8,f9

    !parameters:
    real(wp),parameter :: a1  = 4.0_wp/27.0_wp
    real(wp),parameter :: a2  = 2.0_wp/9.0_wp
    real(wp),parameter :: a3  = 1.0_wp/3.0_wp
    real(wp),parameter :: a4  = 1.0_wp/2.0_wp
    real(wp),parameter :: a5  = 2.0_wp/3.0_wp
    real(wp),parameter :: a6  = 1.0_wp/6.0_wp
    real(wp),parameter :: a8  = 5.0_wp/6.0_wp
    real(wp),parameter :: c   = 1.0_wp/840.0_wp
    real(wp),parameter :: c0  = 41.0_wp
    real(wp),parameter :: c3  = 27.0_wp
    real(wp),parameter :: c4  = 272.0_wp
    real(wp),parameter :: c5  = 27.0_wp
    real(wp),parameter :: c6  = 216.0_wp
    real(wp),parameter :: c8  = 216.0_wp
    real(wp),parameter :: c9  = 41.0_wp
    real(wp),parameter :: aa1 = 4.0_wp/27.0_wp
    real(wp),parameter :: aa2 = 1.0_wp/18.0_wp
    real(wp),parameter :: aa3 = 1.0_wp/12.0_wp
    real(wp),parameter :: aa4 = 1.0_wp/8.0_wp
    real(wp),parameter :: aa5 = 1.0_wp/54.0_wp
    real(wp),parameter :: aa6 = 1.0_wp/4320.0_wp
    real(wp),parameter :: aa7 = 1.0_wp/20.0_wp
    real(wp),parameter :: aa8 = 1.0_wp/288.0_wp
    real(wp),parameter :: aa9 = 1.0_wp/820.0_wp
    real(wp),parameter :: b21 = 3.0_wp
    real(wp),parameter :: b32 = 3.0_wp
    real(wp),parameter :: b43 = 3.0_wp
    real(wp),parameter :: b50 = 13.0_wp
    real(wp),parameter :: b52 = -27.0_wp
    real(wp),parameter :: b53 = 42.0_wp
    real(wp),parameter :: b54 = 8.0_wp
    real(wp),parameter :: b60 = 389.0_wp
    real(wp),parameter :: b62 = -54.0_wp
    real(wp),parameter :: b63 = 966.0_wp
    real(wp),parameter :: b64 = -824.0_wp
    real(wp),parameter :: b65 = 243.0_wp
    real(wp),parameter :: b70 = -231.0_wp
    real(wp),parameter :: b72 = 81.0_wp
    real(wp),parameter :: b73 = -1164.0_wp
    real(wp),parameter :: b74 = 656.0_wp
    real(wp),parameter :: b75 = -122.0_wp
    real(wp),parameter :: b76 = 800.0_wp
    real(wp),parameter :: b80 = -127.0_wp
    real(wp),parameter :: b82 = 18.0_wp
    real(wp),parameter :: b83 = -678.0_wp
    real(wp),parameter :: b84 = 456.0_wp
    real(wp),parameter :: b85 = -9.0_wp
    real(wp),parameter :: b86 = 576.0_wp
    real(wp),parameter :: b87 = 4.0_wp
    real(wp),parameter :: b90 = 1481.0_wp
    real(wp),parameter :: b92 = -81.0_wp
    real(wp),parameter :: b93 = 7104.0_wp
    real(wp),parameter :: b94 = -3376.0_wp
    real(wp),parameter :: b95 = 72.0_wp
    real(wp),parameter :: b96 = -5040.0_wp
    real(wp),parameter :: b97 = -60.0_wp
    real(wp),parameter :: b98 = 720.0_wp

    call me%f(t,x,f0)
    call me%f(t+a1*h,x+aa1*h*f0,f1)
    call me%f(t+a2*h,x+aa2*h*(f0+b21*f1),f2)
    call me%f(t+a3*h,x+aa3*h*(f0+b32*f2),f3)
    call me%f(t+a4*h,x+aa4*h*(f0+b43*f3),f4)
    call me%f(t+a5*h,x+aa5*h*(b50*f0+b52*f2+b53*f3+b54*f4),f5)
    call me%f(t+a6*h,x+aa6*h*(b60*f0+b62*f2+b63*f3+b64*f4+b65*f5),f6)
    call me%f(t+h,x+aa7*h*(b70*f0+b72*f2+b73*f3+b74*f4+b75*f5+b76*f6),f7)
    call me%f(t+a8*h,x+aa8*h*(b80*f0+b82*f2+b83*f3+b84*f4+b85*f5+b86*f6+b87*f7),f8)
    call me%f(t+h,x+aa9*h*(b90*f0+b92*f2+b93*f3+b94*f4+b95*f5+b96*f6+b97*f7+b98*f8),f9)

    xf = x + h*c*(c0*f0+c3*f3+c4*f4+c5*f5+c6*f6+c8*f8+c9*f9)

    end subroutine rk8_10
!*****************************************************************************************

!*****************************************************************************************
!>
!  Unit test of the [[rk_module]].
!  Integrate a two-body orbit around the Earth.

    subroutine rk_test()

    type,extends(rk4_class) :: spacecraft
        !! spacecraft propagation type.
        !! extends the [[rk4_class]] to include data used in the deriv routine
        real(wp) :: mu = zero      !! central body gravitational parameter (km3/s2)
        integer :: fevals = 0      !! number of function evaluations
        logical :: first = .true.  !! first point is being exported
    end type spacecraft

    integer,parameter :: n=6    !! number of state variables
    real(wp),parameter :: tol = 1.0e-12_wp !! event location tolerance

    type(spacecraft) :: s, s2
    real(wp) :: t0,tf,x0(n),dt,xf(n),x02(n),gf,tf_actual

    write(*,*) ''
    write(*,*) '---------------'
    write(*,*) ' rk_test'
    write(*,*) '---------------'
    write(*,*) ''

    !***************************************************************************

    !constructor (main body is Earth):
    s = spacecraft(n=n,f=twobody,mu=398600.436233_wp,report=twobody_report)

    !initial conditions:
    x0 = [10000.0_wp,10000.0_wp,10000.0_wp,&   !initial state [r,v] (km,km/s)
            1.0_wp,2.0_wp,3.0_wp]
    t0 = zero       !initial time (sec)
    dt = 10.0_wp    !time step (sec)
    tf = 1000.0_wp  !final time (sec)

    s%fevals = 0
    s%first = .true.
    call s%integrate(t0,x0,dt,tf,xf)    !forward
    write(*,*) ''
    write(*,'(A/,*(F15.6/))') 'Final state:',xf

    s%fevals = 0
    s%report => null()    !disable reporting
    call s%integrate(tf,xf,-dt,t0,x02)  !backwards

    write(*,'(A/,*(E20.12/))') 'Error:',x02-x0
    write(*,'(A,I5)') 'Function evaluations:', s%fevals
    write(*,*) ''

    !***************************************************************************
    !event finding test:

    write(*,*) ' Event test - integrate until z = 12,000'
    s2 = spacecraft(n=n,f=twobody,g=twobody_event,mu=398600.436233_wp,report=twobody_report)
    x0 = [10000.0_wp,10000.0_wp,10000.0_wp,&   !initial state [r,v] (km,km/s)
            1.0_wp,2.0_wp,3.0_wp]
    t0 = zero       !initial time (sec)
    dt = 10.0_wp    !time step (sec)
    tf = 1000.0_wp  !final time (sec)
    call s2%integrate_to_event(t0,x0,dt,tf,tol,tf_actual,xf,gf)
    write(*,*) ''
    write(*,'(A/,*(F15.6/))') 'Final time: ',tf_actual
    write(*,'(A/,*(F15.6/))') 'Final state:',xf
    write(*,'(A/,*(F15.6/))') 'Event func :',gf

    contains
!*****************************************************************************************

    !*********************************************************
        subroutine twobody(me,t,x,xdot)

        !! derivative routine for two-body orbit propagation

        implicit none

        class(rk_class),intent(inout)        :: me
        real(wp),intent(in)                  :: t
        real(wp),dimension(me%n),intent(in)  :: x
        real(wp),dimension(me%n),intent(out) :: xdot

        real(wp),dimension(3) :: r,v,a_grav
        real(wp) :: rmag

        select type (me)
        class is (spacecraft)

            r = x(1:3)
            v = x(4:6)
            rmag = norm2(r)
            a_grav = -me%mu/rmag**3 * r !acceleration due to gravity

            xdot(1:3) = v
            xdot(4:6) = a_grav

            me%fevals = me%fevals + 1

        end select

        end subroutine twobody
    !*********************************************************

    !*********************************************************
        subroutine twobody_report(me,t,x)

        !! report function - write time,state to console

        implicit none

        class(rk_class),intent(inout)        :: me
        real(wp),intent(in)                  :: t
        real(wp),dimension(me%n),intent(in)  :: x

        select type (me)
        class is (spacecraft)
            if (me%first) then  !print header
                write(*,*) ''
                write(*,'(*(A15,1X))')  'time (sec)','x (km)','y (km)','z (km)',&
                                        'vx (km/s)','vy (km/s)','vz (km/s)'
                me%first = .false.
            end if
        end select

        write(*,'(*(F15.6,1X))') t,x

        end subroutine twobody_report
    !*********************************************************

    !*********************************************************
        subroutine twobody_event(me,t,x,g)

        !! event function (z = 12,000)

        implicit none

        class(rk_class),intent(inout)        :: me
        real(wp),intent(in)                  :: t
        real(wp),dimension(me%n),intent(in)  :: x
        real(wp),intent(out)                 :: g

        g = x(3) - 12000.0_wp

        end subroutine twobody_event
    !*********************************************************

    end subroutine rk_test
!*****************************************************************************************

!*****************************************************************************************
    end module rk_module
!*****************************************************************************************