brent_module.f90 Source File


This file depends on

sourcefile~~brent_module.f90~~EfferentGraph sourcefile~brent_module.f90 brent_module.f90 sourcefile~kind_module.f90 kind_module.F90 sourcefile~brent_module.f90->sourcefile~kind_module.f90 sourcefile~numbers_module.f90 numbers_module.f90 sourcefile~brent_module.f90->sourcefile~numbers_module.f90 sourcefile~numbers_module.f90->sourcefile~kind_module.f90

Files dependent on this one

sourcefile~~brent_module.f90~~AfferentGraph sourcefile~brent_module.f90 brent_module.f90 sourcefile~fortran_astrodynamics_toolkit.f90 fortran_astrodynamics_toolkit.f90 sourcefile~fortran_astrodynamics_toolkit.f90->sourcefile~brent_module.f90 sourcefile~rk_module.f90 rk_module.f90 sourcefile~fortran_astrodynamics_toolkit.f90->sourcefile~rk_module.f90 sourcefile~rk_module_variable_step.f90 rk_module_variable_step.f90 sourcefile~fortran_astrodynamics_toolkit.f90->sourcefile~rk_module_variable_step.f90 sourcefile~halo_orbit_module.f90 halo_orbit_module.f90 sourcefile~fortran_astrodynamics_toolkit.f90->sourcefile~halo_orbit_module.f90 sourcefile~rk_module.f90->sourcefile~brent_module.f90 sourcefile~rk_module_variable_step.f90->sourcefile~brent_module.f90 sourcefile~halo_orbit_module.f90->sourcefile~rk_module.f90

Source Code

!*****************************************************************************************
!> author: Jacob Williams
!
!  Brent algorithms for minimization and root solving without derivatives.
!
!### See also
!
!  1. R. Brent, "Algorithms for Minimization Without Derivatives",
!     Prentice-Hall, Inc., 1973.

    module brent_module

    use kind_module,  only: wp
    use numbers_module

    implicit none

    private

    type,public :: brent_class
        !! the main class
        procedure(func),pointer :: f => null()  !! function to be minimized
    contains
        procedure :: set_function
        procedure :: minimize => fmin
        procedure :: find_zero => zeroin
    end type brent_class

    abstract interface
        function func(me,x) result(f)
            !! Interface to the function to be minimized.
            !! It should evaluate f(x) for any x in the interval (ax,bx)
            import :: wp,brent_class
            implicit none
            class(brent_class),intent(inout) :: me
            real(wp),intent(in) :: x
            real(wp) :: f
        end function func
    end interface

    !unit test routine:
    public :: brent_test

    contains
!*****************************************************************************************

!*****************************************************************************************
!> author: Jacob Williams
!  date: 7/19/2014
!
!  Set the function to be minimized.

    subroutine set_function(me,f)

    implicit none

    class(brent_class),intent(inout) :: me
    procedure(func)                  :: f

    me%f => f

    end subroutine set_function
!*****************************************************************************************

!*****************************************************************************************
!>
!  An approximation x to the point where f attains a minimum on
!  the interval (ax,bx) is determined.
!
!  the method used is a combination of golden section search and
!  successive parabolic interpolation. convergence is never much slower
!  than that for a fibonacci search. if f has a continuous second
!  derivative which is positive at the minimum (which is not at ax or
!  bx), then convergence is superlinear, and usually of the order of
!  about 1.324.
!
!  the function f is never evaluated at two points closer together
!  than eps*abs(fmin) + (tol/3), where eps is approximately the square
!  root of the relative machine precision. if f is a unimodal
!  function and the computed values of f are always unimodal when
!  separated by at least eps*abs(x) + (tol/3), then fmin approximates
!  the abcissa of the global minimum of f on the interval ax,bx with
!  an error less than 3*eps*abs(fmin) + tol. if f is not unimodal,
!  then fmin may approximate a local, but perhaps non-global, minimum to
!  the same accuracy.
!
!  this function subprogram is a slightly modified version of the
!  algol 60 procedure localmin given in richard brent, algorithms for
!  minimization without derivatives, prentice - hall, inc. (1973).
!
!### See also
!  [1] http://www.netlib.org/fmm/fmin.f

    function fmin(me,ax,bx,tol) result(xmin)

    implicit none

    class(brent_class),intent(inout) :: me
    real(wp),intent(in) :: ax   !! left endpoint of initial interval
    real(wp),intent(in) :: bx   !! right endpoint of initial interval
    real(wp),intent(in) :: tol  !! desired length of the interval of
                                !! uncertainty of the final result (>=0)
    real(wp)            :: xmin !! abcissa approximating the point where
                                !! f attains a minimum

    real(wp) :: a,b,d,e,xm,p,q,r,tol1,tol2,u,v,w
    real(wp) :: fu,fv,fw,fx,x
    real(wp) :: abs,sqrt,sign

    real(wp),parameter :: c = (three-sqrt(five))/two  !! squared inverse of golden ratio
    real(wp),parameter :: half = 0.5_wp
    real(wp),parameter :: eps = sqrt(epsilon(one))

    ! initialization

    a = ax
    b = bx
    v = a + c*(b - a)
    w = v
    x = v
    e = zero
    fx = me%f(x)
    fv = fx
    fw = fx

    do    !  main loop starts here

        xm = half*(a + b)
        tol1 = eps*abs(x) + tol/three
        tol2 = two*tol1

        !  check stopping criterion

        if (abs(x - xm) <= (tol2 - half*(b - a))) exit

        ! is golden-section necessary

        if (abs(e) <= tol1) then

            !  a golden-section step

            if (x >= xm) then
                e = a - x
            else
                e = b - x
            end if
            d = c*e

        else

            !  fit parabola

            r = (x - w)*(fx - fv)
            q = (x - v)*(fx - fw)
            p = (x - v)*q - (x - w)*r
            q = two*(q - r)
            if (q > zero) p = -p
            q =  abs(q)
            r = e
            e = d

            !  is parabola acceptable

            if ((abs(p) >= abs(half*q*r)) .or. (p <= q*(a - x)) .or. (p >= q*(b - x))) then

                !  a golden-section step

                if (x >= xm) then
                    e = a - x
                else
                    e = b - x
                end if
                d = c*e

            else

                !  a parabolic interpolation step

                d = p/q
                u = x + d

                !  f must not be evaluated too close to ax or bx

                if (((u - a) < tol2) .or. ((b - u) < tol2)) d = sign(tol1, xm - x)

            end if

        end if

        !  f must not be evaluated too close to x

        if (abs(d) >= tol1) then
            u = x + d
        else
            u = x + sign(tol1, d)
        end if
        fu = me%f(u)

        !  update a, b, v, w, and x

        if (fu <= fx) then
            if (u >= x) a = x
            if (u < x) b = x
            v = w
            fv = fw
            w = x
            fw = fx
            x = u
            fx = fu
        else
            if (u < x) a = u
            if (u >= x) b = u
            if (fu <= fw .or. w == x) then
                v = w
                fv = fw
                w = u
                fw = fu
            else if (fu <= fv .or. v == x .or. v == w ) then
                v = u
                fv = fu
            end if
        end if

    end do    !  end of main loop

    xmin = x

    end function fmin
!*****************************************************************************************

!*****************************************************************************************
!>
!  Find a zero of the function \( f(x) \) in the given interval
!  \( [a_x,b_x] \) to within a tolerance \( 4 \epsilon |x| + tol \),
!  where \( \epsilon \) is the relative machine precision defined as
!  the smallest representable number such that \( 1.0 + \epsilon > 1.0 \).
!
!  It is assumed that \( f(a_x) \) and \( f(b_x) \) have opposite signs.
!
!### References
!  * R. P. Brent, "[An algorithm with guaranteed convergence for
!    finding a zero of a function](http://maths-people.anu.edu.au/~brent/pd/rpb005.pdf)",
!    The Computer Journal, Vol 14, No. 4., 1971.
!  * R. P. Brent, "[Algorithms for minimization without derivatives](http://maths-people.anu.edu.au/~brent/pub/pub011.html)",
!    Prentice-Hall, Inc., 1973.
!
!### See also
!  1. [zeroin.f](http://www.netlib.org/go/zeroin.f) from Netlib

    subroutine zeroin(me,ax,bx,tol,xzero,fzero,iflag,fax,fbx)

    use iso_fortran_env, only: error_unit

    implicit none

    class(brent_class),intent(inout) :: me
    real(wp),intent(in)              :: ax      !! left endpoint of initial interval
    real(wp),intent(in)              :: bx      !! right endpoint of initial interval
    real(wp),intent(in)              :: tol     !! desired length of the interval of uncertainty of the final result (>=0)
    real(wp),intent(out)             :: xzero   !! abscissa approximating a zero of `f` in the interval `ax`,`bx`
    real(wp),intent(out)             :: fzero   !! value of `f` at the root (`f(xzero)`)
    integer,intent(out)              :: iflag   !! status flag (`-1`=error, `0`=root found)
    real(wp),intent(in),optional     :: fax     !! if `f(ax)` is already known, it can be input here
    real(wp),intent(in),optional     :: fbx     !! if `f(ax)` is already known, it can be input here

    real(wp),parameter :: eps   = epsilon(one)  !! original code had d1mach(4)
    real(wp) :: a,b,c,d,e,fa,fb,fc,tol1,xm,p,q,r,s

    tol1 = eps+one

    a=ax
    b=bx

    if (present(fax)) then
        fa = fax
    else
        fa=me%f(a)
    end if
    if (present(fbx)) then
        fb = fbx
    else
        fb=me%f(b)
    end if

    !check trivial cases first:
    if (fa==zero) then

        iflag = 0
        xzero = a
        fzero = fa

    elseif (fb==zero) then

        iflag = 0
        xzero = b
        fzero = fb

    elseif (fa*(fb/abs(fb))<zero) then  ! check that f(ax) and f(bx) have different signs

        c=a
        fc=fa
        d=b-a
        e=d

        do

            if (abs(fc)<abs(fb)) then
                a=b
                b=c
                c=a
                fa=fb
                fb=fc
                fc=fa
            end if

            tol1=two*eps*abs(b)+0.5_wp*tol
            xm = 0.5_wp*(c-b)
            if ((abs(xm)<=tol1).or.(fb==zero)) exit

            ! see if a bisection is forced
            if ((abs(e)>=tol1).and.(abs(fa)>abs(fb))) then
                s=fb/fa
                if (a/=c) then
                    ! inverse quadratic interpolation
                    q=fa/fc
                    r=fb/fc
                    p=s*(two*xm*q*(q-r)-(b-a)*(r-one))
                    q=(q-one)*(r-one)*(s-one)
                else
                    ! linear interpolation
                    p=two*xm*s
                    q=one-s
                end if
                if (p<=zero) then
                    p=-p
                else
                    q=-q
                end if
                s=e
                e=d
                if (((two*p)>=(three*xm*q-abs(tol1*q))) .or. &
                    (p>=abs(0.5_wp*s*q))) then
                    d=xm
                    e=d
                else
                    d=p/q
                end if
            else
                d=xm
                e=d
            end if

            a=b
            fa=fb
            if (abs(d)<=tol1) then
                if (xm<=zero) then
                    b=b-tol1
                else
                    b=b+tol1
                end if
            else
                b=b+d
            end if
            fb=me%f(b)
            if ((fb*(fc/abs(fc)))>zero) then
                c=a
                fc=fa
                d=b-a
                e=d
            end if

        end do

        iflag = 0
        xzero = b
        fzero = fb

    else

        iflag = -1
        write(error_unit,'(A)')&
            'Error in zeroin: f(ax) and f(bx) do not have different signs.'

    end if

    end subroutine zeroin
!*****************************************************************************************

!*****************************************************************************************
!> author: Jacob Williams
!  date: 7/16/2014
!
!  Test of the [[fmin]] and [[zeroin]] functions.

    subroutine brent_test()

    implicit none

    real(wp) :: r,fzero
    integer :: iflag

    real(wp),parameter :: ax = zero
    real(wp),parameter :: bx = two*pi
    real(wp),parameter :: tol = 1.0e-6_wp

    type,extends(brent_class) :: myfunc_type
        integer :: i = 0    !! function counter
    end type myfunc_type
    type(myfunc_type) :: myfunc

    write(*,*) ''
    write(*,*) '---------------'
    write(*,*) ' brent_test'
    write(*,*) '---------------'
    write(*,*) ''

    call myfunc%set_function(sin_func)    !set the function

    !call fmin:
    ! [the minimum is at 270 deg]
    myfunc%i = 0
    r = myfunc%minimize(ax,bx,tol)
    write(*,*) 'minimum of sin(x) at: ', r*180.0_wp/pi,' deg'
    write(*,*) 'number of function calls: ', myfunc%i

    !call zeroin:
    ! [the root is at pi]
    myfunc%i = 0
    call myfunc%find_zero(ax+0.0001_wp,bx/two+0.0002,tol,r,fzero,iflag)
    write(*,*) 'root of sin(x) at: ', r*180.0_wp/pi,' deg'
    write(*,*) 'number of function calls: ', myfunc%i

    contains

        function sin_func(me,x) result(f)
        !! Example function to minimize: sin(x)

        implicit none

        class(brent_class),intent(inout) :: me
        real(wp),intent(in) :: x
        real(wp) :: f

        f = sin(x)

        select type (me)
        class is (myfunc_type)
            me%i = me%i + 1 !number of function calls
        end select

        end function sin_func

    end subroutine brent_test
 !*****************************************************************************************

!*****************************************************************************************
    end module brent_module
!*****************************************************************************************