rk_module_variable_step.f90 Source File


This file depends on

sourcefile~~rk_module_variable_step.f90~~EfferentGraph sourcefile~rk_module_variable_step.f90 rk_module_variable_step.f90 sourcefile~brent_module.f90 brent_module.f90 sourcefile~rk_module_variable_step.f90->sourcefile~brent_module.f90 sourcefile~conversion_module.f90 conversion_module.f90 sourcefile~rk_module_variable_step.f90->sourcefile~conversion_module.f90 sourcefile~kind_module.f90 kind_module.F90 sourcefile~rk_module_variable_step.f90->sourcefile~kind_module.f90 sourcefile~numbers_module.f90 numbers_module.f90 sourcefile~rk_module_variable_step.f90->sourcefile~numbers_module.f90 sourcefile~orbital_mechanics_module.f90 orbital_mechanics_module.f90 sourcefile~rk_module_variable_step.f90->sourcefile~orbital_mechanics_module.f90 sourcefile~brent_module.f90->sourcefile~kind_module.f90 sourcefile~brent_module.f90->sourcefile~numbers_module.f90 sourcefile~conversion_module.f90->sourcefile~kind_module.f90 sourcefile~conversion_module.f90->sourcefile~numbers_module.f90 sourcefile~numbers_module.f90->sourcefile~kind_module.f90 sourcefile~orbital_mechanics_module.f90->sourcefile~kind_module.f90 sourcefile~orbital_mechanics_module.f90->sourcefile~numbers_module.f90 sourcefile~math_module.f90 math_module.f90 sourcefile~orbital_mechanics_module.f90->sourcefile~math_module.f90 sourcefile~vector_module.f90 vector_module.f90 sourcefile~orbital_mechanics_module.f90->sourcefile~vector_module.f90 sourcefile~math_module.f90->sourcefile~kind_module.f90 sourcefile~math_module.f90->sourcefile~numbers_module.f90 sourcefile~vector_module.f90->sourcefile~kind_module.f90 sourcefile~vector_module.f90->sourcefile~numbers_module.f90

Files dependent on this one

sourcefile~~rk_module_variable_step.f90~~AfferentGraph sourcefile~rk_module_variable_step.f90 rk_module_variable_step.f90 sourcefile~fortran_astrodynamics_toolkit.f90 fortran_astrodynamics_toolkit.f90 sourcefile~fortran_astrodynamics_toolkit.f90->sourcefile~rk_module_variable_step.f90

Source Code

!*****************************************************************************************
!> author: Jacob Williams
!  date: April 1, 2016
!
!  High-order variable step size Runge-Kutta integration methods.
!
!  Currently have four methods:
!   * Fehlberg 7(8)
!   * Fehlberg 8(9)
!   * Verner 8(9)
!   * Feagin 8(10)
!   * Feagin 12(10)
!   * Feagin 14(12)
!
!@warning This is a work in progress.

    module rk_module_variable_step

    use kind_module, only: wp
    use numbers_module

    implicit none

    private

    type,public :: stepsize_class

        !! Algorithms for adjusting the step size for variable-step
        !! Runge-Kutta integrators.

        private

        real(wp) :: hmax           = huge(one)        !! maximum allowed step size
        real(wp) :: hmin           = two*epsilon(one) !! minimum allowed step size
        real(wp) :: hfactor_reject = 1.0e-3_wp        !! minimum allowed factor for decreasing step size after rejected step
        real(wp) :: hfactor_accept = 100.0_wp         !! maximum allowed factor for increasing step size after accepted step
        integer  :: accept_mode    = 1                !! method to determine if step is accepted [1,2]
        integer  :: max_attempts   = 100              !! maximum number of attempts to decrease step size before giving up

        ! the `hfactor` equation is:
        !
        ! if (relative_err) then
        !     hfactor = safety_factor * abs(tol*h/err)**(one/real(p+p_exponent_offset,wp))
        ! else
        !     hfactor = safety_factor * abs(tol/err)**(one/real(p+p_exponent_offset,wp))
        ! end if

        logical  :: relative_err      = .false. !! to use `tol*h` in the `hfactor` equation
        real(wp) :: safety_factor     = 0.9_wp  !! for `hfactor` equation (>0)
        integer  :: p_exponent_offset = 0       !! p + this value in the exponent (0 or 1)

        procedure(norm_func),nopass,pointer :: norm => maxval_func
            !! routine for computing the norm of the state

        contains

        private

        procedure,public :: initialize => stepsize_class_constructor
        procedure,public :: compute_stepsize
        procedure,public :: destroy => destroy_stepsize_class

    end type stepsize_class

    type,abstract,public :: rk_variable_step_class

        !! Main integration class for variable step size Runge-Kutta methods

        private

        integer :: n = 0  !! user specified number of variables
        procedure(deriv_func),pointer  :: f      => null()  !! user-specified derivative function
        procedure(report_func),pointer :: report => null()  !! user-specified report function
        procedure(event_func),pointer  :: g      => null()  !! event function (stop when this is zero)

        class(stepsize_class),allocatable :: stepsize_method  !! the method for varying the step size

        real(wp),dimension(:),allocatable :: rtol  !! relative tolerance (`size(n)`)
        real(wp),dimension(:),allocatable :: atol  !! absolute tolerance (`size(n)`)

        integer :: p = 0 !! order of the method

        integer :: hinit_method = 1 !! if automatically computing the inital step size, which
                                    !! method to use. 1 = `hstart`, 2 = `hinit`.

        integer :: num_rejected_steps = 0 !! number of rejected steps

        contains

        private

        procedure,public                 :: initialize         !! initialize the class (set n,f, and report)
        procedure,public                 :: destroy            !! destructor
        procedure,non_overridable,public :: integrate          !! main integration routine
        procedure,non_overridable,public :: integrate_to_event !! integration with event finding
        procedure(step_func),deferred    :: step               !! the step routine for the rk method
        procedure(order_func),deferred   :: order              !! returns `p`, the order of the method
        procedure :: hstart  !! for automatically computing the initial step size [this is from DDEABM]
        procedure :: hinit   !! for automatically computing the initial step size [this is from DOP853]

    end type rk_variable_step_class

    type,extends(rk_variable_step_class),public :: rkf78_class
        !! Runga-Kutta Fehlberg 7(8) method.
        contains
        procedure :: step  => rkf78
        procedure :: order => rkf78_order
    end type rkf78_class
    type,extends(rk_variable_step_class),public :: rkf89_class
        !! Runga-Kutta Fehlberg 8(9) method.
        contains
        procedure :: step  => rkf89
        procedure :: order => rkf89_order
    end type rkf89_class
    type,extends(rk_variable_step_class),public :: rkv89_class
        !! Runga-Kutta Verner 8(9) method.
        contains
        procedure :: step  => rkv89
        procedure :: order => rkv89_order
    end type rkv89_class
    type,extends(rk_variable_step_class),public :: rkf108_class
        !! Runga-Kutta Feagin 8(10) method.
        contains
        procedure :: step  => rkf108
        procedure :: order => rkf108_order
    end type rkf108_class
    type,extends(rk_variable_step_class),public :: rkf1210_class
        !! Runga-Kutta Feagin 12(10) method.
        contains
        procedure :: step  => rkf1210
        procedure :: order => rkf1210_order
    end type rkf1210_class
    type,extends(rk_variable_step_class),public :: rkf1412_class
        !! Runga-Kutta Feagin 14(12) method.
        contains
        procedure :: step  => rkf1412
        procedure :: order => rkf1412_order
    end type rkf1412_class

    abstract interface

        pure function norm_func(x) result(xmag)
        !! Vector norm function. Must return a value \( \ge 0 \).
        import :: wp
        implicit none
            real(wp),dimension(:),intent(in) :: x    !! a vector
            real(wp)                         :: xmag !! the magnitude of the vector
        end function norm_func

        pure function order_func(me) result(p)
        import :: rk_variable_step_class
        implicit none
            class(rk_variable_step_class),intent(in) :: me
            integer                    :: p !! order of the method
        end function order_func

        subroutine deriv_func(me,t,x,xdot)  !! derivative function
        import :: rk_variable_step_class,wp
        implicit none
            class(rk_variable_step_class),intent(inout)     :: me
            real(wp),intent(in)               :: t    !! time
            real(wp),dimension(:),intent(in)  :: x    !! state vector
            real(wp),dimension(:),intent(out) :: xdot !! derivative of state vector
        end subroutine deriv_func

        subroutine event_func(me,t,x,g)  !! event function
        import :: rk_variable_step_class,wp
        implicit none
            class(rk_variable_step_class),intent(inout)     :: me
            real(wp),intent(in)               :: t !! time
            real(wp),dimension(:),intent(in)  :: x !! state vector
            real(wp),intent(out)              :: g !! g(t,x). The goal is to stop the integration when g=0.
        end subroutine event_func

        subroutine report_func(me,t,x)  !! report function
        import :: rk_variable_step_class,wp
        implicit none
            class(rk_variable_step_class),intent(inout)    :: me
            real(wp),intent(in)              :: t !! time
            real(wp),dimension(:),intent(in) :: x !! state vector
        end subroutine report_func

        subroutine step_func(me,t,x,h,xf,terr)   !! rk step function
        import :: rk_variable_step_class,wp
        implicit none
            class(rk_variable_step_class),intent(inout)        :: me
            real(wp),intent(in)                  :: t    !! initial time
            real(wp),dimension(me%n),intent(in)  :: x    !! initial state vector
            real(wp),intent(in)                  :: h    !! time step \( |\Delta t| \)
            real(wp),dimension(me%n),intent(out) :: xf   !! final state vector
            real(wp),dimension(me%n),intent(out) :: terr !! truncation error estimate
        end subroutine step_func

    end interface

    ! public routines:
    public :: norm2_func,maxval_func

    ! for testing:
    public :: step_size_test
    public :: rk_test_variable_step

    contains
!*****************************************************************************************

!*****************************************************************************************
!>
!  Use intrinsic `norm2(x)` for computing the vector norm.

    pure function norm2_func(x) result(xmag)

    implicit none

    real(wp),dimension(:),intent(in) :: x
    real(wp) :: xmag

    xmag = norm2(x)

    end function norm2_func
!*****************************************************************************************

!*****************************************************************************************
!>
!  Use `maxval(abs(x))` for computing the vector norm.

    pure function maxval_func(x) result(xmag)

    implicit none

    real(wp),dimension(:),intent(in) :: x
    real(wp) :: xmag

    xmag = maxval(abs(x))

    end function maxval_func
!*****************************************************************************************

!*****************************************************************************************
!>
!  Constructor for a [[stepsize_class]].
!
!@warning The `norm` and `compute_h_factor` options aren't public in the module.
!         Need to fix this.

    pure subroutine stepsize_class_constructor(me,hmin,hmax,hfactor_reject,&
                        hfactor_accept,norm,accept_mode,relative_err,&
                        safety_factor,p_exponent_offset,max_attempts)


    implicit none

    class(stepsize_class),intent(inout)       :: me
    real(wp),intent(in),optional              :: hmin             !! minimum allowed step size (>0)
    real(wp),intent(in),optional              :: hmax             !! maximum allowed step size (>0)
    real(wp),intent(in),optional              :: hfactor_reject   !! minimum allowed factor for
                                                                  !! decreasing step size after
                                                                  !! rejected step (>0)
    real(wp),intent(in),optional              :: hfactor_accept   !! maximum allowed factor for
                                                                  !! decreasing step size after
                                                                  !! accepted step (>0)
    procedure(norm_func),optional             :: norm             !! the user-specified \( ||x|| \)
                                                                  !! function
    integer,intent(in),optional               :: accept_mode      !! method to determine if step
                                                                  !! is accepted [1,2]
    integer,intent(in),optional               :: max_attempts     !! max step size change attempts
                                                                  !! after rejected step
    logical,intent(in),optional   :: relative_err       !! to use `tol*h` in the `hfactor` equation
    real(wp),intent(in),optional  :: safety_factor      !! for `hfactor` equation (>0)
    integer,intent(in),optional   :: p_exponent_offset  !! p + this value in the exponent (0 or 1)

    if (present(hmin))             me%hmin             = abs(hmin)
    if (present(hmax))             me%hmax             = abs(hmax)
    if (present(hfactor_reject))   me%hfactor_reject   = abs(hfactor_reject)
    if (present(hfactor_accept))   me%hfactor_accept   = abs(hfactor_accept)
    if (present(norm))             me%norm             => norm
    if (present(accept_mode))      me%accept_mode      = accept_mode
    if (present(max_attempts))     me%max_attempts     = max_attempts

    !if (present(compute_h_factor)) me%compute_h_factor => compute_h_factor
    if (present(relative_err     )) me%relative_err      = relative_err
    if (present(safety_factor    )) me%safety_factor     = abs(safety_factor    )
    if (present(p_exponent_offset)) me%p_exponent_offset = abs(p_exponent_offset)

    end subroutine stepsize_class_constructor
!*****************************************************************************************

!*****************************************************************************************
!>
!  Destructor for [[stepsize_class]].

    subroutine destroy_stepsize_class(me)

    implicit none

    class(stepsize_class),intent(out) :: me

    end subroutine destroy_stepsize_class
!*****************************************************************************************

!*****************************************************************************************
    pure subroutine compute_stepsize(me,h,tol,err,p,hnew,accept)

    !! Compute the new step size using the specific method.

    implicit none

    class(stepsize_class),intent(in) :: me
    real(wp),intent(in)              :: h      !! current step size (<>0)
    real(wp),intent(in)              :: tol    !! abs error tolerance (>0)
    real(wp),intent(in)              :: err    !! truncation error estimate (>0)
    integer,intent(in)               :: p      !! order of the method
    real(wp),intent(out)             :: hnew   !! new step size (<>0)
    logical,intent(out)              :: accept !! if the step is accepted

    real(wp) :: hfactor  !! step size factor (>0)
    real(wp),parameter :: small = ten * epsilon(one) !! small error value

    if (err<=small) then ! the error is extremely small

        hfactor = me%hfactor_accept
        accept = .true.

    else

        ! compute base factor based on the selected formula:
        !hfactor = abs(me%compute_h_factor(h,tol,err,p))
        if (me%relative_err) then
            hfactor = abs( me%safety_factor*abs(tol*h/err)**(one/real(p+me%p_exponent_offset,wp)) )
        else
            hfactor = abs( me%safety_factor*abs(tol/err)**(one/real(p+me%p_exponent_offset,wp)) )
        end if

        ! if the step is to be accepted:
        select case (me%accept_mode)
        case(1) !algorithm 17.12
            accept = (hfactor>=one)
        case(2) !algorithm 17.13
            accept = (err<=tol)
        end select

        !...notes:
        ! see: L. Shampine "Some Practical Runge-Kutta Formulas",
        !      Mathematics of Computation, 46(173), Jan 1986.
        ! different conditions for satisfying error conditions:
        !  ||err|| <= tol   -- Error per step (EPS)
        !  ||err|| <= h*tol -- Error per unit step (EPUS)

        !compute the actual hfactor based on the limits:
        if (accept) then
            hfactor = min(me%hfactor_accept, hfactor)
        else
            hfactor = max(me%hfactor_reject, hfactor)
        end if

    end if

    ! compute the new step size (enforce min/max bounds & add sign):
    hnew = sign(max(me%hmin,min(me%hmax,abs(h)*hfactor)),h)

    end subroutine compute_stepsize
!*****************************************************************************************

!*****************************************************************************************
!>
!  Initialize the [[rk_variable_step_class]].

    subroutine initialize(me,n,f,rtol,atol,stepsize_method,hinit_method,report,g)

    implicit none

    class(rk_variable_step_class),intent(inout) :: me
    integer,intent(in)                          :: n               !! number of equations
    procedure(deriv_func)                       :: f               !! derivative function
    real(wp),dimension(:),intent(in)            :: rtol            !! relative tolerance (if size=1,
                                                                   !! then same tol used for all
                                                                   !! equations)
    real(wp),dimension(:),intent(in)            :: atol            !! absolute tolerance (if size=1,
                                                                   !! then same tol used for all
                                                                   !! equations)
    class(stepsize_class),intent(in)            :: stepsize_method !! method for varying the step size
    integer,intent(in),optional                 :: hinit_method    !! which method to use for
                                                                   !! automatic initial step size
                                                                   !! computation.
                                                                   !! 1 = use `hstart`, 2 = use `hinit`.
    procedure(report_func),optional             :: report          !! for reporting the steps
    procedure(event_func),optional              :: g               !! for stopping at an event

    call me%destroy()

    me%n = n
    me%f => f

    allocate(me%rtol(n))
    allocate(me%atol(n))
    if (size(rtol)==1) then
        me%rtol = rtol(1) !use this for all equations
    else if (size(rtol)==n) then
        me%rtol = rtol
    else
        error stop 'invalid size for rtol array.'
    end if
    if (size(atol)==1) then
        me%atol = atol(1) !use this for all equations
    else if (size(atol)==n) then
        me%atol = atol
    else
        error stop 'invalid size for atol array.'
    end if

    if (present(hinit_method)) me%hinit_method = hinit_method

    if (present(report)) me%report => report
    if (present(g))      me%g      => g

    allocate(me%stepsize_method, source=stepsize_method)

    me%num_rejected_steps = 0

    end subroutine initialize
!*****************************************************************************************

!*****************************************************************************************
!>
!  Destructor for [[rk_variable_step_class]].

    subroutine destroy(me)

    implicit none

    class(rk_variable_step_class),intent(out) :: me

    end subroutine destroy
!*****************************************************************************************

!*****************************************************************************************
!>
!  Main integration routine for the [[rk_variable_step_class]].

    subroutine integrate(me,t0,x0,h,tf,xf,ierr)

    implicit none

    class(rk_variable_step_class),intent(inout)     :: me
    real(wp),intent(in)               :: t0    !! initial time
    real(wp),dimension(:),intent(in)  :: x0    !! initial state
    real(wp),intent(in)               :: h     !! initial abs(time step)
    real(wp),intent(in)               :: tf    !! final time
    real(wp),dimension(:),intent(out) :: xf    !! final state
    integer,intent(out),optional      :: ierr  !! 0 = no errors,
                                               !! <0 = error.
                                               !! if not present, an error will stop program.

    real(wp) :: t,dt,t2,err,tol,dt_new
    real(wp),dimension(me%n) :: x,terr,etol,xp0
    logical :: last,export,accept
    integer :: i,p

    if (present(ierr)) ierr = 0

    if (.not. associated(me%f)) then
        if (present(ierr)) then
            ierr = -1
            return
        else
            error stop 'Error in integrate: f is not associated.'
        end if
    end if

    me%num_rejected_steps = 0
    export = associated(me%report)

    if (export) call me%report(t0,x0)  !first point

    if (t0==tf) then
        xf = x0
    else

        t = t0
        x = x0

        if (h==zero) then
            ! compute an appropriate initial step size:
            ! WARNING: this may not be working in all cases .....
            etol = me%rtol * me%stepsize_method%norm(x0) + me%atol
            call me%f(t0,x0,xp0)  ! get initial dx/dt
            select case (me%hinit_method)
            case(1)
                call me%hstart(t0,tf,x0,xp0,etol,dt)
            case(2)
                dt = me%hinit(t0,x0,sign(one,tf-t0),xp0,me%stepsize_method%hmax,me%atol,me%rtol)
            case default
                if (present(ierr)) then
                    ierr = -2
                    return
                else
                    error stop 'invalid hinit_method selection'
                end if
            end select
            !write(*,*) 'inital step size: ',dt
        else
            ! user-specified initial step size:
            dt = sign(h,tf-t0)  ! (correct sign)
        end if

        p = me%order()     !order of the method
        do
            t2 = t + dt
            last = ((dt>=zero .and. t2>=tf) .or. &  !adjust last time step
                    (dt<zero .and. t2<=tf))         !
            if (last) dt = tf-t                     !

            do i=0,me%stepsize_method%max_attempts

                ! take a step:
                call me%step(t,x,dt,xf,terr)

                ! evaluate error and compute new step size:
                err = me%stepsize_method%norm(terr)
                tol = me%stepsize_method%norm( me%rtol * xf + me%atol )
                call me%stepsize_method%compute_stepsize(dt,tol,err,p,dt_new,accept)
                dt = dt_new

                if (accept) then
                    !accept this step
                    exit
                else
                    !step is rejected, repeat step with new dt
                    me%num_rejected_steps = me%num_rejected_steps + 1

                    !note: if we have reached the min step size, and the error
                    !is still too large, we can't proceed.
                    if (i>=me%stepsize_method%max_attempts) then
                        if (present(ierr)) then
                            ierr = -3
                            return
                        else
                            error stop 'error: too many attempts to reduce step size.'
                        end if
                    end if
                    if (abs(dt) <= abs(me%stepsize_method%hmin)) then
                        if (present(ierr)) then
                            ierr = -4
                            return
                        else
                            error stop 'warning: min step size.'
                        end if
                    end if

                    !......
                    !... if we have two rejected steps and the step size hasn't changed..
                    !    then we need to abort, since no progress is being made...
                    !......

                    last = ((dt>=zero .and. t2>=tf) .or. &  !adjust last time step
                            (dt<zero .and. t2<=tf))         !
                    if (last) dt = tf-t                     !
                    t2 = t + dt

                end if

            end do

            if (last) exit
            if (export) call me%report(t2,xf)   !intermediate point
            x = xf
            t = t2
        end do

    end if

    if (export) call me%report(tf,xf)   !last point

    end subroutine integrate
!*****************************************************************************************

!*****************************************************************************************
!>
!  Event-finding integration routine for the [[rk_variable_step_class]].
!  Integrates until g(t,x)=0, or until t=tf (whichever happens first).
!
!@note There are some efficiency improvements that could be made here.
!      This is a work in progress.

    subroutine integrate_to_event(me,t0,x0,h,tmax,tol,tf,xf,gf,ierr)

    use brent_module

    implicit none

    class(rk_variable_step_class),intent(inout) :: me
    real(wp),intent(in)                  :: t0      !! initial time
    real(wp),dimension(me%n),intent(in)  :: x0      !! initial state
    real(wp),intent(in)                  :: h       !! abs(time step)
    real(wp),intent(in)                  :: tmax    !! max final time if event not located
    real(wp),intent(in)                  :: tol     !! function tolerance for root finding
    real(wp),intent(out)                 :: tf      !! actual final time reached
    real(wp),dimension(me%n),intent(out) :: xf      !! final state (at tf)
    real(wp),intent(out)                 :: gf      !! g value at tf
    integer,intent(out),optional      :: ierr  !! 0 = no errors,
                                               !! <0 = error.
                                               !! if not present, an error will stop program.

    real(wp),dimension(me%n) :: etol,xp0
    real(wp),dimension(me%n) :: x,g_xf
    real(wp),dimension(me%n) :: terr !! truncation error estimate
    integer :: i,p,iflag
    real(wp) :: t,dt,t2,ga,gb,dt_root,dum,err,dt_new,stol
    logical :: first,last,export,accept
    procedure(report_func),pointer :: report
    type(brent_class) :: solver

    if (present(ierr)) ierr = 0

    if (.not. associated(me%f)) then
        if (present(ierr)) then
            ierr = -1
            return
        else
            error stop 'Error in integrate_to_event: f is not associated.'
        end if
    end if
    if (.not. associated(me%g)) then
        if (present(ierr)) then
            ierr = -2
            return
        else
            error stop 'Error in integrate_to_event: g is not associated.'
        end if
    end if

    me%num_rejected_steps = 0
    export = associated(me%report)

    if (export) call me%report(t0,x0)  !first point

    if (t0==tmax) then
        xf = x0
        tf = t0
        call me%g(t0,x0,gf)
    else

        first = .true.
        t = t0
        x = x0
        call me%g(t,x,ga)     !evaluate event function

        if (h==zero) then
            ! compute an appropriate initial step size:
            ! WARNING: this may not be working in all cases .....
            etol = me%rtol * me%stepsize_method%norm(x0) + me%atol
            call me%f(t0,x0,xp0)  ! get initial dx/dt
            select case (me%hinit_method)
            case(1)
                call me%hstart(t0,tmax,x0,xp0,etol,dt)
            case(2)
                dt = me%hinit(t0,x0,sign(one,tmax-t0),xp0,me%stepsize_method%hmax,me%atol,me%rtol)
            case default
                if (present(ierr)) then
                    ierr = -3
                    return
                else
                    error stop 'invalid hinit_method selection'
                end if
            end select
        else
            ! user-specified initial step size:
            dt = sign(h,tmax-t0)  ! (correct sign)
        end if

        p = me%order()     !order of the method
        do

            t2 = t + dt
            last = ((dt>=zero .and. t2>=tmax) .or. &  !adjust last time step
                    (dt<zero .and. t2<=tmax))         !
            if (last) then
                dt = tmax-t
                t2 = tmax
            end if

            do i=0,me%stepsize_method%max_attempts

                ! take a step:
                call me%step(t,x,dt,xf,terr)

                ! evaluate error and compute new step size:
                err = me%stepsize_method%norm(terr)
                stol = me%stepsize_method%norm( me%rtol * xf + me%atol )
                call me%stepsize_method%compute_stepsize(dt,stol,err,p,dt_new,accept)
                dt = dt_new

                if (accept) then
                    !accept this step
                    exit
                else
                    !step is rejected, repeat step with new dt
                    me%num_rejected_steps = me%num_rejected_steps + 1

                    !note: if we have reached the min step size, and the error
                    !is still too large, we can't proceed.
                    if (i>=me%stepsize_method%max_attempts) then
                        if (present(ierr)) then
                            ierr = -4
                            return
                        else
                            error stop 'error: too many attempts to reduce step size.'
                        end if
                    end if
                    if (abs(dt) <= abs(me%stepsize_method%hmin)) then
                        if (present(ierr)) then
                            ierr = -5
                            return
                        else
                            error stop 'warning: min step size.'
                        end if
                    end if

                    !......
                    !... if we have two rejected steps and the step size hasn't changed..
                    !    then we need to abort, since no progress is being made...
                    !......

                    last = ((dt>=zero .and. t2>=tmax) .or. &  !adjust last time step
                            (dt<zero .and. t2<=tmax))         !
                    if (last) then
                        dt = tmax-t
                        t2 = tmax
                    else
                        t2 = t + dt
                    end if

                end if

            end do

            call me%g(t2,xf,gb)     !evaluate event function

            if (first .and. abs(ga)<=tol) then

                !we ignore a root at t0 after the first step
                if (abs(gb)<=tol) then !check this one since it could have landed on a root
                    gf = gb
                    tf = t2
                    exit
                else
                    if (last) then  !exiting without having found a root
                        tf = t2
                        gf = gb
                        exit
                    end if
                    if (export) call me%report(t2,xf)   !intermediate point
                    x = xf
                    t = t2
                    ga = gb
                end if

            elseif (ga*gb<=zero) then !there is a root somewhere on [t,t+dt]

                !find the root:
                call solver%set_function(solver_func)
                call solver%find_zero(zero,dt,tol,dt_root,dum,iflag,ga,gb)
                t2 = t + dt_root
                gf = solver_func(solver,dt_root)
                tf = t2
                xf = g_xf !computed in the solver function
                exit

            else  !no root yet, continue

                if (last) then  !exiting without having found a root
                    tf = t2
                    gf = gb
                    exit
                end if
                if (export) call me%report(t2,xf)   !intermediate point
                x = xf
                t = t2
                ga = gb

            end if

            if (first) first = .false.
            if (last) exit
            x = xf
            t = t2
        end do

    end if

    if (export) call me%report(tf,xf)   !last point

    contains

        function solver_func(this,delt) result(g)

        !! root solver function. The input is the dt offset from time t.

        implicit none

        class(brent_class),intent(inout) :: this
        real(wp),intent(in) :: delt  !! from [0 to dt]
        real(wp) :: g

        real(wp),dimension(me%n) :: terr !! truncation error estimate

        !take a step from t to t+delt and evaluate g function:
        ! [we don't check the error because we are within a
        !  step that was already accepted, so it should be ok]
        call me%step(t,x,delt,g_xf,terr)
        call me%g(t+delt,g_xf,g)

        end function solver_func

    end subroutine integrate_to_event
!*****************************************************************************************

!*****************************************************************************************
!>
!  Fehlberg's 7(8) algorithm.
!
!### Reference
!  * E. Fehlberg, "Classical Fifth-, Sixth-, Seventh-, and Eighth-Order
!    Runge-Kutta Formulas with Stepsize Control",
!   [NASA TR R-2870](http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680027281_1968027281.pdf).

    subroutine rkf78(me,t,x,h,xf,terr)

    implicit none

    class(rkf78_class),intent(inout)     :: me
    real(wp),intent(in)                  :: t
    real(wp),dimension(me%n),intent(in)  :: x
    real(wp),intent(in)                  :: h
    real(wp),dimension(me%n),intent(out) :: xf
    real(wp),dimension(me%n),intent(out) :: terr

    real(wp),parameter :: a1  = 2.0_wp/27.0_wp
    real(wp),parameter :: a2  = 1.0_wp/9.0_wp
    real(wp),parameter :: a3  = 1.0_wp/6.0_wp
    real(wp),parameter :: a4  = 5.0_wp/12.0_wp
    real(wp),parameter :: a5  = 1.0_wp/2.0_wp
    real(wp),parameter :: a6  = 5.0_wp/6.0_wp
    real(wp),parameter :: a7  = 1.0_wp/6.0_wp
    real(wp),parameter :: a8  = 2.0_wp/3.0_wp
    real(wp),parameter :: a9  = 1.0_wp/3.0_wp
    !real(wp),parameter :: a10 = 1.0_wp
    !real(wp),parameter :: a12 = 1.0_wp

    real(wp),parameter :: b10  = 2.0_wp/27.0_wp
    real(wp),parameter :: b20  = 1.0_wp/36.0_wp
    real(wp),parameter :: b21  = 1.0_wp/12.0_wp
    real(wp),parameter :: b30  = 1.0_wp/24.0_wp
    real(wp),parameter :: b32  = 1.0_wp/8.0_wp
    real(wp),parameter :: b40  = 5.0_wp/12.0_wp
    real(wp),parameter :: b42  = -25.0_wp/16.0_wp
    real(wp),parameter :: b43  = 25.0_wp/16.0_wp
    real(wp),parameter :: b50  = 1.0_wp/20.0_wp
    real(wp),parameter :: b53  = 1.0_wp/4.0_wp
    real(wp),parameter :: b54  = 1.0_wp/5.0_wp
    real(wp),parameter :: b60  = -25.0_wp/108.0_wp
    real(wp),parameter :: b63  = 125.0_wp/108.0_wp
    real(wp),parameter :: b64  = -65.0_wp/27.0_wp
    real(wp),parameter :: b65  = 125.0_wp/54.0_wp
    real(wp),parameter :: b70  = 31.0_wp/300.0_wp
    real(wp),parameter :: b74  = 61.0_wp/225.0_wp
    real(wp),parameter :: b75  = -2.0_wp/9.0_wp
    real(wp),parameter :: b76  = 13.0_wp/900.0_wp
    real(wp),parameter :: b80  = 2.0_wp
    real(wp),parameter :: b83  = -53.0_wp/6.0_wp
    real(wp),parameter :: b84  = 704.0_wp/45.0_wp
    real(wp),parameter :: b85  = -107.0_wp/9.0_wp
    real(wp),parameter :: b86  = 67.0_wp/90.0_wp
    real(wp),parameter :: b87  = 3.0_wp
    real(wp),parameter :: b90  = -91.0_wp/108.0_wp
    real(wp),parameter :: b93  = 23.0_wp/108.0_wp
    real(wp),parameter :: b94  = -976.0_wp/135.0_wp
    real(wp),parameter :: b95  = 311.0_wp/54.0_wp
    real(wp),parameter :: b96  = -19.0_wp/60.0_wp
    real(wp),parameter :: b97  = 17.0_wp/6.0_wp
    real(wp),parameter :: b98  = -1.0_wp/12.0_wp
    real(wp),parameter :: b100 = 2383.0_wp/4100.0_wp
    real(wp),parameter :: b103 = -341.0_wp/164.0_wp
    real(wp),parameter :: b104 = 4496.0_wp/1025.0_wp
    real(wp),parameter :: b105 = -301.0_wp/82.0_wp
    real(wp),parameter :: b106 = 2133.0_wp/4100.0_wp
    real(wp),parameter :: b107 = 45.0_wp/82.0_wp
    real(wp),parameter :: b108 = 45.0_wp/164.0_wp
    real(wp),parameter :: b109 = 18.0_wp/41.0_wp
    real(wp),parameter :: b110 = 3.0_wp/205.0_wp
    real(wp),parameter :: b115 = -6.0_wp/41.0_wp
    real(wp),parameter :: b116 = -3.0_wp/205.0_wp
    real(wp),parameter :: b117 = -3.0_wp/41.0_wp
    real(wp),parameter :: b118 = 3.0_wp/41.0_wp
    real(wp),parameter :: b119 = 6.0_wp/41.0_wp
    real(wp),parameter :: b120 = -1777.0_wp/4100.0_wp
    real(wp),parameter :: b123 = -341.0_wp/164.0_wp
    real(wp),parameter :: b124 = 4496.0_wp/1025.0_wp
    real(wp),parameter :: b125 = -289.0_wp/82.0_wp
    real(wp),parameter :: b126 = 2193.0_wp/4100.0_wp
    real(wp),parameter :: b127 = 51.0_wp/82.0_wp
    real(wp),parameter :: b128 = 33.0_wp/164.0_wp
    real(wp),parameter :: b129 = 12.0_wp/41.0_wp
    !real(wp),parameter :: b1211 = 1.0_wp

    real(wp),parameter :: c5  = 34.0_wp/105.0_wp
    real(wp),parameter :: c6  = 9.0_wp/35.0_wp
    real(wp),parameter :: c7  = 9.0_wp/35.0_wp
    real(wp),parameter :: c8  = 9.0_wp/280.0_wp
    real(wp),parameter :: c9  = 9.0_wp/280.0_wp
    real(wp),parameter :: c11 = 41.0_wp/840.0_wp
    real(wp),parameter :: c12 = 41.0_wp/840.0_wp

    real(wp),dimension(me%n) :: f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12

    if (h==zero) then
        xf = x
        terr = zero
        return
    end if

    call me%f(t,x,f0)
    call me%f(t+h*a1,x+f0*b10*h,f1)
    call me%f(t+h*a2,x+(f0*b20+f1*b21)*h,f2)
    call me%f(t+h*a3,x+(f0*b30+f2*b32)*h,f3)
    call me%f(t+h*a4,x+(f0*b40+f2*b42+f3*b43)*h,f4)
    call me%f(t+h*a5,x+(f0*b50+f3*b53+f4*b54)*h,f5)
    call me%f(t+h*a6,x+(f0*b60+f3*b63+f4*b64+f5*b65)*h,f6)
    call me%f(t+h*a7,x+(f0*b70+f4*b74+f5*b75+f6*b76)*h,f7)
    call me%f(t+h*a8,x+(f0*b80+f3*b83+f4*b84+f5*b85+f6*b86+&
                f7*b87)*h,f8)
    call me%f(t+h*a9,x+(f0*b90+f3*b93+f4*b94+f5*b95+f6*b96+&
                f7*b97+f8*b98)*h,f9)
    call me%f(t+h,x+(f0*b100+f3*b103+f4*b104+f5*b105+&
                f6*b106+f7*b107+f8*b108+f9*b109)*h,f10)
    call me%f(t,x+(f0*b110+f5*b115+f6*b116+f7*b117+f8*b118+&
                f9*b119)*h,f11)
    call me%f(t+h,x+(f0*b120+f3*b123+f4*b124+f5*b125+f6*b126+&
                f7*b127+f8*b128+f9*b129+f11)*h,f12)

    xf = x + h*(f5*c5+f6*c6+f7*c7+f8*c8+f9*c9+f11*c11+f12*c12)

    terr = (41.0_wp/840.0_wp)*(f0+f10-f11-f12)

    end subroutine rkf78
!*****************************************************************************************

!*****************************************************************************************
!>
!  Fehlberg 8(9) method.
!
!### Reference
!  * E. Fehlberg, "Classical Fifth-, Sixth-, Seventh-, and Eighth-Order
!    Runge-Kutta Formulas with Stepsize Control",
!   [NASA TR R-2870](http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680027281_1968027281.pdf).

    subroutine rkf89(me,t,x,h,xf,terr)

    implicit none

    class(rkf89_class),intent(inout)     :: me
    real(wp),intent(in)                  :: t    !! initial time
    real(wp),dimension(me%n),intent(in)  :: x    !! initial state
    real(wp),intent(in)                  :: h    !! time step
    real(wp),dimension(me%n),intent(out) :: xf   !! state at time `t+h`
    real(wp),dimension(me%n),intent(out) :: terr !! truncation error estimate

    real(wp),parameter :: a1  = 0.44368940376498183109599404281370_wp
    real(wp),parameter :: a2  = 0.66553410564747274664399106422055_wp
    real(wp),parameter :: a3  = 0.99830115847120911996598659633083_wp
    real(wp),parameter :: a4  = 0.3155_wp
    real(wp),parameter :: a5  = 0.50544100948169068626516126737384_wp
    real(wp),parameter :: a6  = 0.17142857142857142857142857142857_wp
    real(wp),parameter :: a7  = 0.82857142857142857142857142857143_wp
    real(wp),parameter :: a8  = 0.66543966121011562534953769255586_wp
    real(wp),parameter :: a9  = 0.24878317968062652069722274560771_wp
    real(wp),parameter :: a10 = 0.1090_wp
    real(wp),parameter :: a11 = 0.8910_wp
    real(wp),parameter :: a12 = 0.3995_wp
    real(wp),parameter :: a13 = 0.6005_wp
    real(wp),parameter :: a14 = 1.0_wp
    real(wp),parameter :: a16 = 1.0_wp

    real(wp),parameter :: b1    = 0.44368940376498183109599404281370_wp
    real(wp),parameter :: b20   = 0.16638352641186818666099776605514_wp
    real(wp),parameter :: b21   = 0.49915057923560455998299329816541_wp
    real(wp),parameter :: b30   = 0.24957528961780227999149664908271_wp
    real(wp),parameter :: b32   = 0.74872586885340683997448994724812_wp
    real(wp),parameter :: b40   = 0.20661891163400602426556710393185_wp
    real(wp),parameter :: b42   = 0.17707880377986347040380997288319_wp
    real(wp),parameter :: b43   = -0.68197715413869494669377076815048e-1_wp
    real(wp),parameter :: b50   = 0.10927823152666408227903890926157_wp
    real(wp),parameter :: b53   = 0.40215962642367995421990563690087e-2_wp
    real(wp),parameter :: b54   = 0.39214118169078980444392330174325_wp
    real(wp),parameter :: b60   = 0.98899281409164665304844765434355e-1_wp
    real(wp),parameter :: b63   = 0.35138370227963966951204487356703e-2_wp
    real(wp),parameter :: b64   = 0.12476099983160016621520625872489_wp
    real(wp),parameter :: b65   = -0.55745546834989799643742901466348e-1_wp
    real(wp),parameter :: b70   = -0.36806865286242203724153101080691_wp
    real(wp),parameter :: b74   = -0.22273897469476007645024020944166e+1_wp
    real(wp),parameter :: b75   = 0.13742908256702910729565691245744e+1_wp
    real(wp),parameter :: b76   = 0.20497390027111603002159354092206e+1_wp
    real(wp),parameter :: b80   = 0.45467962641347150077351950603349e-1_wp
    real(wp),parameter :: b85   = 0.32542131701589147114677469648853_wp
    real(wp),parameter :: b86   = 0.28476660138527908888182420573687_wp
    real(wp),parameter :: b87   = 0.97837801675979152435868397271099e-2_wp
    real(wp),parameter :: b90   = 0.60842071062622057051094145205182e-1_wp
    real(wp),parameter :: b95   = -0.21184565744037007526325275251206e-1_wp
    real(wp),parameter :: b96   = 0.19596557266170831957464490662983_wp
    real(wp),parameter :: b97   = -0.42742640364817603675144835342899e-2_wp
    real(wp),parameter :: b98   = 0.17434365736814911965323452558189e-1_wp
    real(wp),parameter :: b100  = 0.54059783296931917365785724111182e-1_wp
    real(wp),parameter :: b106  = 0.11029825597828926530283127648228_wp
    real(wp),parameter :: b107  = -0.12565008520072556414147763782250e-2_wp
    real(wp),parameter :: b108  = 0.36790043477581460136384043566339e-2_wp
    real(wp),parameter :: b109  = -0.57780542770972073040840628571866e-1_wp
    real(wp),parameter :: b110  = 0.12732477068667114646645181799160_wp
    real(wp),parameter :: b117  = 0.11448805006396105323658875721817_wp
    real(wp),parameter :: b118  = 0.28773020709697992776202201849198_wp
    real(wp),parameter :: b119  = 0.50945379459611363153735885079465_wp
    real(wp),parameter :: b1110 = -0.14799682244372575900242144449640_wp
    real(wp),parameter :: b120  = -0.36526793876616740535848544394333e-2_wp
    real(wp),parameter :: b125  = 0.81629896012318919777819421247030e-1_wp
    real(wp),parameter :: b126  = -0.38607735635693506490517694343215_wp
    real(wp),parameter :: b127  = 0.30862242924605106450474166025206e-1_wp
    real(wp),parameter :: b128  = -0.58077254528320602815829374733518e-1_wp
    real(wp),parameter :: b129  = 0.33598659328884971493143451362322_wp
    real(wp),parameter :: b1210 = 0.41066880401949958613549622786417_wp
    real(wp),parameter :: b1211 = -0.11840245972355985520633156154536e-1_wp
    real(wp),parameter :: b130  =  -0.12375357921245143254979096135669e+1_wp
    real(wp),parameter :: b135  =  -0.24430768551354785358734861366763e+2_wp
    real(wp),parameter :: b136  =  0.54779568932778656050436528991173_wp
    real(wp),parameter :: b137  =  -0.44413863533413246374959896569346e+1_wp
    real(wp),parameter :: b138  =  0.10013104813713266094792617851022e+2_wp
    real(wp),parameter :: b139  =  -0.14995773102051758447170985073142e+2_wp
    real(wp),parameter :: b1310 =  0.58946948523217013620824539651427e+1_wp
    real(wp),parameter :: b1311 =  0.17380377503428984877616857440542e+1_wp
    real(wp),parameter :: b1312 =  0.27512330693166730263758622860276e+2_wp
    real(wp),parameter :: b140  = -0.35260859388334522700502958875588_wp
    real(wp),parameter :: b145  = -0.18396103144848270375044198988231_wp
    real(wp),parameter :: b146  = -0.65570189449741645138006879985251_wp
    real(wp),parameter :: b147  = -0.39086144880439863435025520241310_wp
    real(wp),parameter :: b148  = 0.26794646712850022936584423271209_wp
    real(wp),parameter :: b149  = -0.10383022991382490865769858507427e+1_wp
    real(wp),parameter :: b1410 = 0.16672327324258671664727346168501e+1_wp
    real(wp),parameter :: b1411 = 0.49551925855315977067732967071441_wp
    real(wp),parameter :: b1412 = 0.11394001132397063228586738141784e+1_wp
    real(wp),parameter :: b1413 = 0.51336696424658613688199097191534e-1_wp
    real(wp),parameter :: b150  = 0.10464847340614810391873002406755e-2_wp
    real(wp),parameter :: b158  = -0.67163886844990282237778446178020e-2_wp
    real(wp),parameter :: b159  = 0.81828762189425021265330065248999e-2_wp
    real(wp),parameter :: b1510 = -0.42640342864483347277142138087561e-2_wp
    real(wp),parameter :: b1511 = 0.28009029474168936545976331153703e-3_wp
    real(wp),parameter :: b1512 = -0.87835333876238676639057813145633e-2_wp
    real(wp),parameter :: b1513 = 0.10254505110825558084217769664009e-1_wp
    real(wp),parameter :: b160  = -0.13536550786174067080442168889966e+1_wp
    real(wp),parameter :: b165  = -0.18396103144848270375044198988231_wp
    real(wp),parameter :: b166  = -0.65570189449741645138006879985251_wp
    real(wp),parameter :: b167  = -0.39086144880439863435025520241310_wp
    real(wp),parameter :: b168  =  0.27466285581299925758962207732989_wp
    real(wp),parameter :: b169  = -0.10464851753571915887035188572676e+1_wp
    real(wp),parameter :: b1610 =  0.16714967667123155012004488306588e+1_wp
    real(wp),parameter :: b1611 =  0.49523916825841808131186990740287_wp
    real(wp),parameter :: b1612 =  0.11481836466273301905225795954930e+1_wp
    real(wp),parameter :: b1613 =  0.41082191313833055603981327527525e-1_wp
    real(wp),parameter :: b1615 =  1.0_wp

    real(wp),parameter :: c0  = 0.32256083500216249913612900960247e-1_wp
    real(wp),parameter :: c8  = 0.25983725283715403018887023171963_wp
    real(wp),parameter :: c9  = 0.92847805996577027788063714302190e-1_wp
    real(wp),parameter :: c10 = 0.16452339514764342891647731842800_wp
    real(wp),parameter :: c11 = 0.17665951637860074367084298397547_wp
    real(wp),parameter :: c12 = 0.23920102320352759374108933320941_wp
    real(wp),parameter :: c13 = 0.39484274604202853746752118829325e-2_wp
    real(wp),parameter :: c14 = 0.30726495475860640406368305522124e-1_wp

    real(wp),dimension(me%n) :: f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16

    if (h==zero) then
        xf = x
        terr = zero
        return
    end if

    call me%f(t,x,f0)
    call me%f(t+h*a1,x+f0*b1*h,f1)
    call me%f(t+h*a2,x+(f0*b20+f1*b21)*h,f2)
    call me%f(t+h*a3,x+(f0*b30+f2*b32)*h,f3)
    call me%f(t+h*a4,x+(f0*b40+f2*b42+f3*b43)*h,f4)
    call me%f(t+h*a5,x+(f0*b50+f3*b53+f4*b54)*h,f5)
    call me%f(t+h*a6,x+(f0*b60+f3*b63+f4*b64+f5*b65)*h,f6)
    call me%f(t+h*a7,x+(f0*b70+f4*b74+f5*b75+f6*b76)*h,f7)
    call me%f(t+h*a8,x+(f0*b80+f5*b85+f6*b86+f7*b87)*h,f8)
    call me%f(t+h*a9,x+(f0*b90+f5*b95+f6*b96+f7*b97+f8*b98)*h,f9)
    call me%f(t+h*a10,x+(f0*b100+f6*b106+f7*b107+f8*b108+&
            f9*b109)*h,f10)
    call me%f(t+h*a11,x+(f0*b110+f7*b117+f8*b118+f9*b119+&
            f10*b1110)*h,f11)
    call me%f(t+h*a12,x+(f0*b120+f5*b125+f6*b126+f7*b127+&
            f8*b128+f9*b129+f10*b1210+f11*b1211)*h,f12)
    call me%f(t+h*a13,x+(f0*b130+f5*b135+f6*b136+f7*b137+&
            f8*b138+f9*b139+f10*b1310+f11*b1311+f12*b1312)*h,f13)
    call me%f(t+h*a14,x+(f0*b140+f5*b145+f6*b146+f7*b147+f8*b148+&
            f9*b149+f10*b1410+f11*b1411+f12*b1412+f13*b1413)*h,f14)
    call me%f(t,x+(f0*b150+f8*b158+f9*b159+f10*b1510+f11*b1511+&
            f12*b1512+f13*b1513)*h,f15)
    call me%f(t+h*a16,x+(f0*b160+f5*b165+f6*b166+f7*b167+f8*b168+&
            f9*b169+f10*b1610+f11*b1611+f12*b1612+f13*b1613+&
            f15*b1615)*h,f16)

    xf = x+h*(f0*c0+f8*c8+f9*c9+f10*c10+f11*c11+f12*c12+f13*c13+f14*c14)

    terr = c14*h*(f0+f14-f15-f16)

    end subroutine rkf89
!*****************************************************************************************

!*****************************************************************************************
!>
!  Runge Kutta Verner 8(9)
!
!### Reference
!  * J. H. Verner, "Explicit Runge–Kutta Methods with Estimates of the
!    Local Truncation Error", SIAM Journal on Numerical Analysis,
!   15(4), 772–790, 1978.

    subroutine rkv89(me,t,x,h,xf,terr)

    implicit none

    class(rkv89_class),intent(inout)     :: me
    real(wp),intent(in)                  :: t     !! initial time
    real(wp),dimension(me%n),intent(in)  :: x     !! initial state
    real(wp),intent(in)                  :: h     !! time step
    real(wp),dimension(me%n),intent(out) :: xf    !! state at time `t+h`
    real(wp),dimension(me%n),intent(out) :: terr  !! truncation error estimate

    real(wp),parameter :: s6 = sqrt(6.0_wp)

    real(wp),parameter :: a2  = 1.0_wp/12.0_wp
    real(wp),parameter :: a3  = 1.0_wp/9.0_wp
    real(wp),parameter :: a4  = 1.0_wp/6.0_wp
    real(wp),parameter :: a5  = 2.0_wp*(1.0_wp+s6)/15.0_wp
    real(wp),parameter :: a6  = (6.0_wp+s6)/15.0_wp
    real(wp),parameter :: a7  = (6.0_wp-s6)/15.0_wp
    real(wp),parameter :: a8  = 2.0_wp/3.0_wp
    real(wp),parameter :: a9  = 1.0_wp/2.0_wp
    real(wp),parameter :: a10 = 1.0_wp/3.0_wp
    real(wp),parameter :: a11 = 1.0_wp/4.0_wp
    real(wp),parameter :: a12 = 4.0_wp/3.0_wp
    real(wp),parameter :: a13 = 5.0_wp/6.0_wp
    real(wp),parameter :: a15 = 1.0_wp/6.0_wp

    real(wp),parameter :: b31   = 1.0_wp/27.0_wp
    real(wp),parameter :: b32   = 2.0_wp/27.0_wp
    real(wp),parameter :: b41   = 1.0_wp/24.0_wp
    real(wp),parameter :: b43   = 3.0_wp/24.0_wp
    real(wp),parameter :: b51   = (4.0_wp+94.0_wp*s6)/375.0_wp
    real(wp),parameter :: b53   = -(282.0_wp+252.0_wp*s6)/375.0_wp
    real(wp),parameter :: b54   = (328.0_wp+208.0_wp*s6)/375.0_wp
    real(wp),parameter :: b61   = (9.0_wp-s6)/150.0_wp
    real(wp),parameter :: b64   = (312.0_wp+32.0_wp*s6)/1425.0_wp
    real(wp),parameter :: b65   = (69.0_wp+29.0_wp*s6)/570.0_wp
    real(wp),parameter :: b71   = (927.0_wp-347.0_wp*s6)/1250.0_wp
    real(wp),parameter :: b74   = (-16248.0_wp+7328.0_wp*s6)/9375.0_wp
    real(wp),parameter :: b75   = (-489.0_wp+179.0_wp*s6)/3750.0_wp
    real(wp),parameter :: b76   = (14268.0_wp-5798.0_wp*s6)/9375.0_wp
    real(wp),parameter :: b81   = 4.0_wp/54.0_wp
    real(wp),parameter :: b86   = (16.0_wp-s6)/54.0_wp
    real(wp),parameter :: b87   = (16.0_wp+s6)/54.0_wp
    real(wp),parameter :: b91   = 38.0_wp/512.0_wp
    real(wp),parameter :: b96   = (118.0_wp-23.0_wp*s6)/512.0_wp
    real(wp),parameter :: b97   = (118.0_wp+23.0_wp*s6)/512.0_wp
    real(wp),parameter :: b98   = -18.0_wp/512.0_wp
    real(wp),parameter :: b101  = 11.0_wp/144.0_wp
    real(wp),parameter :: b106  = (266.0_wp-s6)/864.0_wp
    real(wp),parameter :: b107  = (266.0_wp+s6)/864.0_wp
    real(wp),parameter :: b108  = -1.0_wp/16.0_wp
    real(wp),parameter :: b109  = -8.0_wp/27.0_wp
    real(wp),parameter :: b111  = (5034.0_wp-271.0_wp*s6)/61440.0_wp
    real(wp),parameter :: b117  = (7859.0_wp-1626.0_wp*s6)/10240.0_wp
    real(wp),parameter :: b118  = (-2232.0_wp+813.0_wp*s6)/20480.0_wp
    real(wp),parameter :: b119  = (-594.0_wp+271.0_wp*s6)/960.0_wp
    real(wp),parameter :: b1110 = (657.0_wp-813.0_wp*s6)/5120.0_wp
    real(wp),parameter :: b121  = (5996.0_wp-3794.0_wp*s6)/405.0_wp
    real(wp),parameter :: b126  = (-4342.0_wp-338.0_wp*s6)/9.0_wp
    real(wp),parameter :: b127  = (154922.0_wp-40458.0_wp*s6)/135.0_wp
    real(wp),parameter :: b128  = (-4176.0_wp+3794.0_wp*s6)/45.0_wp
    real(wp),parameter :: b129  = (-340864.0_wp+242816.0_wp*s6)/405.0_wp
    real(wp),parameter :: b1210 = (26304.0_wp-15176.0_wp*s6)/45.0_wp
    real(wp),parameter :: b1211 = -26624.0_wp/81.0_wp
    real(wp),parameter :: b131  = (3793.0_wp+2168.0_wp*s6)/103680.0_wp
    real(wp),parameter :: b136  = (4042.0_wp+2263.0_wp*s6)/13824.0_wp
    real(wp),parameter :: b137  = (-231278.0_wp+40717.0_wp*s6)/69120.0_wp
    real(wp),parameter :: b138  = (7947.0_wp-2168.0_wp*s6)/11520.0_wp
    real(wp),parameter :: b139  = (1048.0_wp-542.0_wp*s6)/405.0_wp
    real(wp),parameter :: b1310 = (-1383.0_wp+542.0_wp*s6)/720.0_wp
    real(wp),parameter :: b1311 = 2624.0_wp/1053.0_wp
    real(wp),parameter :: b1312 = 3.0_wp/1664.0_wp
    real(wp),parameter :: b141  = -137.0_wp/1296.0_wp
    real(wp),parameter :: b146  = (5642.0_wp-337.0_wp*s6)/864.0_wp
    real(wp),parameter :: b147  = (5642.0_wp+337.0_wp*s6)/864.0_wp
    real(wp),parameter :: b148  = -299.0_wp/48.0_wp
    real(wp),parameter :: b149  = 184.0_wp/81.0_wp
    real(wp),parameter :: b1410 = -44.0_wp/9.0_wp
    real(wp),parameter :: b1411 = -5120.0_wp/1053.0_wp
    real(wp),parameter :: b1412 = -11.0_wp/468.0_wp
    real(wp),parameter :: b1413 = 16.0_wp/9.0_wp
    real(wp),parameter :: b151  = (33617.0_wp-2168.0_wp*s6)/518400.0_wp
    real(wp),parameter :: b156  = (-3846.0_wp+31.0_wp*s6)/13824.0_wp
    real(wp),parameter :: b157  = (155338.0_wp-52807.0_wp*s6)/345600.0_wp
    real(wp),parameter :: b158  = (-12537.0_wp+2168.0_wp*s6)/57600.0_wp
    real(wp),parameter :: b159  = (92.0_wp+542.0_wp*s6)/2025.0_wp
    real(wp),parameter :: b1510 = (-1797.0_wp-542.0_wp*s6)/3600.0_wp
    real(wp),parameter :: b1511 = 320.0_wp/567.0_wp
    real(wp),parameter :: b1512 = -1.0_wp/1920.0_wp
    real(wp),parameter :: b1513 = 4.0_wp/105.0_wp
    real(wp),parameter :: b161  = (-36487.0_wp-30352.0_wp*s6)/279600.0_wp
    real(wp),parameter :: b166  = (-29666.0_wp-4499.0_wp*s6)/7456.0_wp
    real(wp),parameter :: b167  = (2779182.0_wp-615973.0_wp*s6)/186400.0_wp
    real(wp),parameter :: b168  = (-94329.0_wp+91056.0_wp*s6)/93200.0_wp
    real(wp),parameter :: b169  = (-232192.0_wp+121408.0_wp*s6)/17475.0_wp
    real(wp),parameter :: b1610 = (101226.0_wp-22764.0_wp*s6)/5825.0_wp
    real(wp),parameter :: b1611 = -169984.0_wp/9087.0_wp
    real(wp),parameter :: b1612 = -87.0_wp/30290.0_wp
    real(wp),parameter :: b1613 = 492.0_wp/1165.0_wp
    real(wp),parameter :: b1615 = 1260.0_wp/233.0_wp

    real(wp),parameter :: c1  = 103.0_wp/1680.0_wp
    real(wp),parameter :: c8  = -27.0_wp/140.0_wp
    real(wp),parameter :: c9  = 76.0_wp/105.0_wp
    real(wp),parameter :: c10 = -201.0_wp/280.0_wp
    real(wp),parameter :: c11 = 1024.0_wp/1365.0_wp
    real(wp),parameter :: c12 = 3.0_wp/7280.0_wp
    real(wp),parameter :: c13 = 12.0_wp/35.0_wp
    real(wp),parameter :: c14 = 9.0_wp/280.0_wp

    real(wp),parameter :: e1  = -1911.0_wp/109200.0_wp
    real(wp),parameter :: e8  = 34398.0_wp/109200.0_wp
    real(wp),parameter :: e9  = -61152.0_wp/109200.0_wp
    real(wp),parameter :: e10 = 114660.0_wp/109200.0_wp
    real(wp),parameter :: e11 = -114688.0_wp/109200.0_wp
    real(wp),parameter :: e12 = -63.0_wp/109200.0_wp
    real(wp),parameter :: e13 = -13104.0_wp/109200.0_wp
    real(wp),parameter :: e14 = -3510.0_wp/109200.0_wp
    real(wp),parameter :: e15 = 39312.0_wp/109200.0_wp
    real(wp),parameter :: e16 = 6058.0_wp/109200.0_wp

    real(wp),dimension(me%n) :: f1,f2,f3,f4,f5,f6,f7,f8,f9,&
                                f10,f11,f12,f13,f14,f15,f16

    call me%f(t,x,f1)
    call me%f(t+a2*h,x+h*(a2*f1),f2)
    call me%f(t+a3*h,x+h*(b31*f1+b32*f2),f3)
    call me%f(t+a4*h,x+h*(b41*f1+b43*f3),f4)
    call me%f(t+a5*h,x+h*(b51*f1+b53*f3+b54*f4),f5)
    call me%f(t+a6*h,x+h*(b61*f1+b64*f4+b65*f5),f6)
    call me%f(t+a7*h,x+h*(b71*f1+b74*f4+b75*f5+b76*f6),f7)
    call me%f(t+a8*h,x+h*(b81*f1+b86*f6+b87*f7),f8)
    call me%f(t+a9*h,x+h*(b91*f1+b96*f6+b97*f7+b98*f8),f9)
    call me%f(t+a10*h,x+h*(b101*f1+b106*f6+b107*f7+b108*f8+b109*f9),f10)
    call me%f(t+a11*h,x+h*(b111*f1+b117*f7+b118*f8+b119*f9+b1110*f10),f11)
    call me%f(t+a12*h,x+h*(b121*f1+b126*f6+b127*f7+b128*f8+b129*f9+&
                b1210*f10+b1211*f11),f12)
    call me%f(t+a13*h,x+h*(b131*f1+b136*f6+b137*f7+b138*f8+b139*f9+&
                b1310*f10+b1311*f11+b1312*f12),f13)
    call me%f(t+h,x+h*(b141*f1+b146*f6+b147*f7+b148*f8+b149*f9+b1410*f10+&
                b1411*f11+b1412*f12+b1413*f13),f14)
    call me%f(t+a15*h,x+h*(b151*f1+b156*f6+b157*f7+b158*f8+b159*f9+b1510*f10+&
                b1511*f11+b1512*f12+b1513*f13),f15)
    call me%f(t+h,x+h*(b161*f1+b166*f6+b167*f7+b168*f8+b169*f9+b1610*f10+&
                b1611*f11+b1612*f12+b1613*f13+b1615*f15),f16)

    xf = x+h*(c1*f1+c8*f8+c9*f9+c10*f10+c11*f11+c12*f12+c13*f13+c14*f14)

    terr = e1*f1+e8*f8+e9*f9+e10*f10+e11*f11+e12*f12+e13*f13+e14*f14+e15*f15+e16*f16

    end subroutine rkv89
!*****************************************************************************************

!*****************************************************************************************
!>
!  Feagin's RK8(10) method -- a 10th-order method with an embedded 8th-order method.
!
!### Reference
!  * T. Feagin, "[A Tenth-Order Runge-Kutta Method with Error Estimate]
!    (http://sce.uhcl.edu/feagin/courses/rk10.pdf)",
!    [coefficient file](http://sce.uhcl.edu/rungekutta/rk108.txt)

    subroutine rkf108(me,t,x,h,xf,terr)

    implicit none

    class(rkf108_class),intent(inout)    :: me
    real(wp),intent(in)                  :: t     !! initial time
    real(wp),dimension(me%n),intent(in)  :: x     !! initial state
    real(wp),intent(in)                  :: h     !! time step
    real(wp),dimension(me%n),intent(out) :: xf    !! state at time `t+h`
    real(wp),dimension(me%n),intent(out) :: terr  !! truncation error estimate

    real(wp),parameter :: a1  = 0.100000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: a2  = 0.539357840802981787532485197881302436857273449701009015505500_wp
    real(wp),parameter :: a3  = 0.809036761204472681298727796821953655285910174551513523258250_wp
    real(wp),parameter :: a4  = 0.309036761204472681298727796821953655285910174551513523258250_wp
    real(wp),parameter :: a5  = 0.981074190219795268254879548310562080489056746118724882027805_wp
    real(wp),parameter :: a6  = 0.833333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: a7  = 0.354017365856802376329264185948796742115824053807373968324184_wp
    real(wp),parameter :: a8  = 0.882527661964732346425501486979669075182867844268052119663791_wp
    real(wp),parameter :: a9  = 0.642615758240322548157075497020439535959501736363212695909875_wp
    real(wp),parameter :: a10 = 0.357384241759677451842924502979560464040498263636787304090125_wp
    real(wp),parameter :: a11 = 0.117472338035267653574498513020330924817132155731947880336209_wp
    real(wp),parameter :: a12 = 0.833333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: a13 = 0.309036761204472681298727796821953655285910174551513523258250_wp
    real(wp),parameter :: a14 = 0.539357840802981787532485197881302436857273449701009015505500_wp
    real(wp),parameter :: a15 = 0.100000000000000000000000000000000000000000000000000000000000_wp
    !real(wp),parameter :: a16 = 1.00000000000000000000000000000000000000000000000000000000000_wp

    real(wp),parameter :: c0  = 0.0333333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: c1  = 0.0250000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c2  = 0.0333333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: c4  = 0.0500000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c6  = 0.0400000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c8  = 0.189237478148923490158306404106012326238162346948625830327194_wp
    real(wp),parameter :: c9  = 0.277429188517743176508360262560654340428504319718040836339472_wp
    real(wp),parameter :: c10 = 0.277429188517743176508360262560654340428504319718040836339472_wp
    real(wp),parameter :: c11 = 0.189237478148923490158306404106012326238162346948625830327194_wp
    real(wp),parameter :: c12 = -0.0400000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c13 = -0.0500000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c14 = -0.0333333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: c15 = -0.0250000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c16 = 0.0333333333333333333333333333333333333333333333333333333333333_wp

    real(wp),parameter :: b10 = 0.100000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b20 = -0.915176561375291440520015019275342154318951387664369720564660_wp
    real(wp),parameter :: b21 = 1.45453440217827322805250021715664459117622483736537873607016_wp
    real(wp),parameter :: b30 = 0.202259190301118170324681949205488413821477543637878380814562_wp
    real(wp),parameter :: b32 = 0.606777570903354510974045847616465241464432630913635142443687_wp
    real(wp),parameter :: b40 = 0.184024714708643575149100693471120664216774047979591417844635_wp
    real(wp),parameter :: b42 = 0.197966831227192369068141770510388793370637287463360401555746_wp
    real(wp),parameter :: b43 = -0.0729547847313632629185146671595558023015011608914382961421311_wp
    real(wp),parameter :: b50 = 0.0879007340206681337319777094132125475918886824944548534041378_wp
    real(wp),parameter :: b53 = 0.410459702520260645318174895920453426088035325902848695210406_wp
    real(wp),parameter :: b54 = 0.482713753678866489204726942976896106809132737721421333413261_wp
    real(wp),parameter :: b60 = 0.0859700504902460302188480225945808401411132615636600222593880_wp
    real(wp),parameter :: b63 = 0.330885963040722183948884057658753173648240154838402033448632_wp
    real(wp),parameter :: b64 = 0.489662957309450192844507011135898201178015478433790097210790_wp
    real(wp),parameter :: b65 = -0.0731856375070850736789057580558988816340355615025188195854775_wp
    real(wp),parameter :: b70 = 0.120930449125333720660378854927668953958938996999703678812621_wp
    real(wp),parameter :: b74 = 0.260124675758295622809007617838335174368108756484693361887839_wp
    real(wp),parameter :: b75 = 0.0325402621549091330158899334391231259332716675992700000776101_wp
    real(wp),parameter :: b76 = -0.0595780211817361001560122202563305121444953672762930724538856_wp
    real(wp),parameter :: b80 = 0.110854379580391483508936171010218441909425780168656559807038_wp
    real(wp),parameter :: b85 = -0.0605761488255005587620924953655516875526344415354339234619466_wp
    real(wp),parameter :: b86 = 0.321763705601778390100898799049878904081404368603077129251110_wp
    real(wp),parameter :: b87 = 0.510485725608063031577759012285123416744672137031752354067590_wp
    real(wp),parameter :: b90 = 0.112054414752879004829715002761802363003717611158172229329393_wp
    real(wp),parameter :: b95 = -0.144942775902865915672349828340980777181668499748506838876185_wp
    real(wp),parameter :: b96 = -0.333269719096256706589705211415746871709467423992115497968724_wp
    real(wp),parameter :: b97 = 0.499269229556880061353316843969978567860276816592673201240332_wp
    real(wp),parameter :: b98 = 0.509504608929686104236098690045386253986643232352989602185060_wp
    real(wp),parameter :: b100 = 0.113976783964185986138004186736901163890724752541486831640341_wp
    real(wp),parameter :: b105 = -0.0768813364203356938586214289120895270821349023390922987406384_wp
    real(wp),parameter :: b106 = 0.239527360324390649107711455271882373019741311201004119339563_wp
    real(wp),parameter :: b107 = 0.397774662368094639047830462488952104564716416343454639902613_wp
    real(wp),parameter :: b108 = 0.0107558956873607455550609147441477450257136782823280838547024_wp
    real(wp),parameter :: b109 = -0.327769124164018874147061087350233395378262992392394071906457_wp
    real(wp),parameter :: b110 = 0.0798314528280196046351426864486400322758737630423413945356284_wp
    real(wp),parameter :: b115 = -0.0520329686800603076514949887612959068721311443881683526937298_wp
    real(wp),parameter :: b116 = -0.0576954146168548881732784355283433509066159287152968723021864_wp
    real(wp),parameter :: b117 = 0.194781915712104164976306262147382871156142921354409364738090_wp
    real(wp),parameter :: b118 = 0.145384923188325069727524825977071194859203467568236523866582_wp
    real(wp),parameter :: b119 = -0.0782942710351670777553986729725692447252077047239160551335016_wp
    real(wp),parameter :: b1110 = -0.114503299361098912184303164290554670970133218405658122674674_wp
    real(wp),parameter :: b120 = 0.985115610164857280120041500306517278413646677314195559520529_wp
    real(wp),parameter :: b123 = 0.330885963040722183948884057658753173648240154838402033448632_wp
    real(wp),parameter :: b124 = 0.489662957309450192844507011135898201178015478433790097210790_wp
    real(wp),parameter :: b125 = -1.37896486574843567582112720930751902353904327148559471526397_wp
    real(wp),parameter :: b126 = -0.861164195027635666673916999665534573351026060987427093314412_wp
    real(wp),parameter :: b127 = 5.78428813637537220022999785486578436006872789689499172601856_wp
    real(wp),parameter :: b128 = 3.28807761985103566890460615937314805477268252903342356581925_wp
    real(wp),parameter :: b129 = -2.38633905093136384013422325215527866148401465975954104585807_wp
    real(wp),parameter :: b1210 = -3.25479342483643918654589367587788726747711504674780680269911_wp
    real(wp),parameter :: b1211 = -2.16343541686422982353954211300054820889678036420109999154887_wp
    real(wp),parameter :: b130 = 0.895080295771632891049613132336585138148156279241561345991710_wp
    real(wp),parameter :: b132 = 0.197966831227192369068141770510388793370637287463360401555746_wp
    real(wp),parameter :: b133 = -0.0729547847313632629185146671595558023015011608914382961421311_wp
    real(wp),parameter :: b135 = -0.851236239662007619739049371445966793289359722875702227166105_wp
    real(wp),parameter :: b136 = 0.398320112318533301719718614174373643336480918103773904231856_wp
    real(wp),parameter :: b137 = 3.63937263181035606029412920047090044132027387893977804176229_wp
    real(wp),parameter :: b138 = 1.54822877039830322365301663075174564919981736348973496313065_wp
    real(wp),parameter :: b139 = -2.12221714704053716026062427460427261025318461146260124401561_wp
    real(wp),parameter :: b1310 = -1.58350398545326172713384349625753212757269188934434237975291_wp
    real(wp),parameter :: b1311 = -1.71561608285936264922031819751349098912615880827551992973034_wp
    real(wp),parameter :: b1312 = -0.0244036405750127452135415444412216875465593598370910566069132_wp
    real(wp),parameter :: b140 = -0.915176561375291440520015019275342154318951387664369720564660_wp
    real(wp),parameter :: b141 = 1.45453440217827322805250021715664459117622483736537873607016_wp
    real(wp),parameter :: b144 = -0.777333643644968233538931228575302137803351053629547286334469_wp
    real(wp),parameter :: b146 = -0.0910895662155176069593203555807484200111889091770101799647985_wp
    real(wp),parameter :: b1412 = 0.0910895662155176069593203555807484200111889091770101799647985_wp
    real(wp),parameter :: b1413 = 0.777333643644968233538931228575302137803351053629547286334469_wp
    real(wp),parameter :: b150 = 0.100000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b152 = -0.157178665799771163367058998273128921867183754126709419409654_wp
    real(wp),parameter :: b1514 = 0.157178665799771163367058998273128921867183754126709419409654_wp
    real(wp),parameter :: b160 = 0.181781300700095283888472062582262379650443831463199521664945_wp
    real(wp),parameter :: b161 = 0.675000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b162 = 0.342758159847189839942220553413850871742338734703958919937260_wp
    real(wp),parameter :: b164 = 0.259111214548322744512977076191767379267783684543182428778156_wp
    real(wp),parameter :: b165 = -0.358278966717952089048961276721979397739750634673268802484271_wp
    real(wp),parameter :: b166 = -1.04594895940883306095050068756409905131588123172378489286080_wp
    real(wp),parameter :: b167 = 0.930327845415626983292300564432428777137601651182965794680397_wp
    real(wp),parameter :: b168 = 1.77950959431708102446142106794824453926275743243327790536000_wp
    real(wp),parameter :: b169 = 0.100000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b1610 = -0.282547569539044081612477785222287276408489375976211189952877_wp
    real(wp),parameter :: b1611 = -0.159327350119972549169261984373485859278031542127551931461821_wp
    real(wp),parameter :: b1612 = -0.145515894647001510860991961081084111308650130578626404945571_wp
    real(wp),parameter :: b1613 = -0.259111214548322744512977076191767379267783684543182428778156_wp
    real(wp),parameter :: b1614 = -0.342758159847189839942220553413850871742338734703958919937260_wp
    real(wp),parameter :: b1615 = -0.675000000000000000000000000000000000000000000000000000000000_wp

    real(wp),dimension(me%n) :: f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16

    if (h==zero) then
        xf = x
        terr = zero
        return
    end if

    call me%f(t,x,f0)
    call me%f(t+a1*h,x+h*(b10*f0),f1)
    call me%f(t+a2*h,x+h*(b20*f0+b21*f1),f2)
    call me%f(t+a3*h,x+h*(b30*f0+b32*f2),f3)
    call me%f(t+a4*h,x+h*(b40*f0+b42*f2+b43*f3),f4)
    call me%f(t+a5*h,x+h*(b50*f0+b53*f3+b54*f4),f5)
    call me%f(t+a6*h,x+h*(b60*f0+b63*f3+b64*f4+b65*f5),f6)
    call me%f(t+a7*h,x+h*(b70*f0+b74*f4+b75*f5+b76*f6),f7)
    call me%f(t+a8*h,x+h*(b80*f0+b85*f5+b86*f6+b87*f7),f8)
    call me%f(t+a9*h,x+h*(b90*f0+b95*f5+b96*f6+b97*f7+b98*f8),f9)
    call me%f(t+a10*h,x+h*(b100*f0+b105*f5+b106*f6+b107*f7+b108*f8+&
                b109*f9),f10)
    call me%f(t+a11*h,x+h*(b110*f0+b115*f5+b116*f6+b117*f7+b118*f8+&
                b119*f9+b1110*f10),f11)
    call me%f(t+a12*h,x+h*(b120*f0+b123*f3+b124*f4+b125*f5+b126*f6+&
                b127*f7+b128*f8+b129*f9+b1210*f10+b1211*f11),f12)
    call me%f(t+a13*h,x+h*(b130*f0+b132*f2+b133*f3+b135*f5+b136*f6+&
                b137*f7+b138*f8+b139*f9+b1310*f10+b1311*f11+&
                b1312*f12),f13)
    call me%f(t+a14*h,x+h*(b140*f0+b141*f1+b144*f4+b146*f6+b1412*f12+&
                b1413*f13),f14)
    call me%f(t+a15*h,x+h*(b150*f0+b152*f2+b1514*f14),f15)
    call me%f(t+h,x+h*(b160*f0+b161*f1+b162*f2+b164*f4+b165*f5+&
                b166*f6+b167*f7+b168*f8+b169*f9+b1610*f10+b1611*f11+&
                b1612*f12+b1613*f13+b1614*f14+b1615*f15),f16)

    xf = x+h*(c0*f0+c1*f1+c2*f2+c4*f4+c6*f6+c8*f8+c9*f9+&
              c10*f10+c11*f11+c12*f12+c13*f13+c14*f14+c15*f15+c16*f16)

    terr = (1.0_wp/360.0_wp)*h*(f1-f15)

    end subroutine rkf108
!*****************************************************************************************

!*****************************************************************************************
!>
!  Feagin's RK12(10) method -- a 12th-order method with an embedded 10th-order method.
!
!### Reference
!  * [coefficient file](http://sce.uhcl.edu/rungekutta/rk1210.txt)

    subroutine rkf1210(me,t,x,h,xf,terr)

    implicit none

    class(rkf1210_class),intent(inout)    :: me
    real(wp),intent(in)                  :: t     !! initial time
    real(wp),dimension(me%n),intent(in)  :: x     !! initial state
    real(wp),intent(in)                  :: h     !! time step
    real(wp),dimension(me%n),intent(out) :: xf    !! state at time `t+h`
    real(wp),dimension(me%n),intent(out) :: terr  !! truncation error estimate

    real(wp),parameter :: a0  = 0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: a1  = 0.200000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: a2  = 0.555555555555555555555555555555555555555555555555555555555556_wp
    real(wp),parameter :: a3  = 0.833333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: a4  = 0.333333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: a5  = 1.00000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: a6  = 0.671835709170513812712245661002797570438953420568682550710222_wp
    real(wp),parameter :: a7  = 0.288724941110620201935458488967024976908118598341806976469674_wp
    real(wp),parameter :: a8  = 0.562500000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: a9  = 0.833333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: a10 = 0.947695431179199287562380162101836721649589325892740646458322_wp
    real(wp),parameter :: a11 = 0.0548112876863802643887753674810754475842153612931128785028369_wp
    real(wp),parameter :: a12 = 0.0848880518607165350639838930162674302064148175640019542045934_wp
    real(wp),parameter :: a13 = 0.265575603264642893098114059045616835297201264164077621448665_wp
    real(wp),parameter :: a14 = 0.500000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: a15 = 0.734424396735357106901885940954383164702798735835922378551335_wp
    real(wp),parameter :: a16 = 0.915111948139283464936016106983732569793585182435998045795407_wp
    real(wp),parameter :: a17 = 0.947695431179199287562380162101836721649589325892740646458322_wp
    real(wp),parameter :: a18 = 0.833333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: a19 = 0.288724941110620201935458488967024976908118598341806976469674_wp
    real(wp),parameter :: a20 = 0.671835709170513812712245661002797570438953420568682550710222_wp
    real(wp),parameter :: a21 = 0.333333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: a22 = 0.555555555555555555555555555555555555555555555555555555555556_wp
    real(wp),parameter :: a23 = 0.200000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: a24 = 1.00000000000000000000000000000000000000000000000000000000000_wp

    real(wp),parameter :: c0  =  0.0238095238095238095238095238095238095238095238095238095238095_wp
    real(wp),parameter :: c1  =  0.0234375000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c2  =  0.0312500000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c3  =  0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c4  =  0.0416666666666666666666666666666666666666666666666666666666667_wp
    real(wp),parameter :: c5  =  0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c6  =  0.0500000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c7  =  0.0500000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c8  =  0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c9  =  0.100000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c10 =   0.0714285714285714285714285714285714285714285714285714285714286_wp
    real(wp),parameter :: c11 =   0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c12 =   0.138413023680782974005350203145033146748813640089941234591267_wp
    real(wp),parameter :: c13 =   0.215872690604931311708935511140681138965472074195773051123019_wp
    real(wp),parameter :: c14 =   0.243809523809523809523809523809523809523809523809523809523810_wp
    real(wp),parameter :: c15 =   0.215872690604931311708935511140681138965472074195773051123019_wp
    real(wp),parameter :: c16 =   0.138413023680782974005350203145033146748813640089941234591267_wp
    real(wp),parameter :: c17 =  -0.0714285714285714285714285714285714285714285714285714285714286_wp
    real(wp),parameter :: c18 =  -0.100000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c19 =  -0.0500000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c20 =  -0.0500000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c21 =  -0.0416666666666666666666666666666666666666666666666666666666667_wp
    real(wp),parameter :: c22 =  -0.0312500000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c23 =  -0.0234375000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c24 =   0.0238095238095238095238095238095238095238095238095238095238095_wp

    real(wp),parameter :: b10   =    0.200000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b20   =   -0.216049382716049382716049382716049382716049382716049382716049_wp
    real(wp),parameter :: b21   =    0.771604938271604938271604938271604938271604938271604938271605_wp
    real(wp),parameter :: b30   =    0.208333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: b31   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b32   =    0.625000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b40   =    0.193333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: b41   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b42   =    0.220000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b43   =   -0.0800000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b50   =    0.100000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b51   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b52   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b53   =    0.400000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b54   =    0.500000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b60   =    0.103364471650010477570395435690481791543342708330349879244197_wp
    real(wp),parameter :: b61   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b62   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b63   =    0.124053094528946761061581889237115328211074784955180298044074_wp
    real(wp),parameter :: b64   =    0.483171167561032899288836480451962508724109257517289177302380_wp
    real(wp),parameter :: b65   =   -0.0387530245694763252085681443767620580395733302341368038804290_wp
    real(wp),parameter :: b70   =    0.124038261431833324081904585980175168140024670698633612292480_wp
    real(wp),parameter :: b71   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b72   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b73   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b74   =    0.217050632197958486317846256953159942875916353757734167684657_wp
    real(wp),parameter :: b75   =    0.0137455792075966759812907801835048190594443990939408530842918_wp
    real(wp),parameter :: b76   =   -0.0661095317267682844455831341498149531672668252085016565917546_wp
    real(wp),parameter :: b80   =    0.0914774894856882983144991846980432197088832099976660100090486_wp
    real(wp),parameter :: b81   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b82   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b83   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b84   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b85   =   -0.00544348523717469689965754944144838611346156873847009178068318_wp
    real(wp),parameter :: b86   =    0.0680716801688453518578515120895103863112751730758794372203952_wp
    real(wp),parameter :: b87   =    0.408394315582641046727306852653894780093303185664924644551239_wp
    real(wp),parameter :: b90   =    0.0890013652502551018954509355423841780143232697403434118692699_wp
    real(wp),parameter :: b91   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b92   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b93   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b94   =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b95   =    0.00499528226645532360197793408420692800405891149406814091955810_wp
    real(wp),parameter :: b96   =    0.397918238819828997341739603001347156083435060931424970826304_wp
    real(wp),parameter :: b97   =    0.427930210752576611068192608300897981558240730580396406312359_wp
    real(wp),parameter :: b98   =   -0.0865117637557827005740277475955029103267246394128995965941585_wp
    real(wp),parameter :: b100  =    0.0695087624134907543112693906409809822706021061685544615255758_wp
    real(wp),parameter :: b101  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b102  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b103  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b104  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b105  =    0.129146941900176461970759579482746551122871751501482634045487_wp
    real(wp),parameter :: b106  =    1.53073638102311295076342566143214939031177504112433874313011_wp
    real(wp),parameter :: b107  =    0.577874761129140052546751349454576715334892100418571882718036_wp
    real(wp),parameter :: b108  =   -0.951294772321088980532340837388859453930924498799228648050949_wp
    real(wp),parameter :: b109  =   -0.408276642965631951497484981519757463459627174520978426909934_wp
    real(wp),parameter :: b110  =    0.0444861403295135866269453507092463581620165501018684152933313_wp
    real(wp),parameter :: b111  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b112  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b113  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b114  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b115  =   -0.00380476867056961731984232686574547203016331563626856065717964_wp
    real(wp),parameter :: b116  =    0.0106955064029624200721262602809059154469206077644957399593972_wp
    real(wp),parameter :: b117  =    0.0209616244499904333296674205928919920806734650660039898074652_wp
    real(wp),parameter :: b118  =   -0.0233146023259321786648561431551978077665337818756053603898847_wp
    real(wp),parameter :: b119  =    0.00263265981064536974369934736325334761174975280887405725010964_wp
    real(wp),parameter :: b1110 =    0.00315472768977025060103545855572111407955208306374459723959783_wp
    real(wp),parameter :: b120  =    0.0194588815119755475588801096525317761242073762016273186231215_wp
    real(wp),parameter :: b121  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b122  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b123  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b124  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b125  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b126  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b127  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b128  =    0.0000678512949171812509306121653452367476194364781259165332321534_wp
    real(wp),parameter :: b129  =   -0.0000429795859049273623271005330230162343568863387724883603675550_wp
    real(wp),parameter :: b1210 =    0.0000176358982260285155407485928953302139937553442829975734148981_wp
    real(wp),parameter :: b1211 =    0.0653866627415027051009595231385181033549511358787382098351924_wp
    real(wp),parameter :: b130  =    0.206836835664277105916828174798272361078909196043446411598231_wp
    real(wp),parameter :: b131  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b132  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b133  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b134  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b135  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b136  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b137  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b138  =    0.0166796067104156472828045866664696450306326505094792505215514_wp
    real(wp),parameter :: b139  =   -0.00879501563200710214457024178249986591130234990219959208704979_wp
    real(wp),parameter :: b1310 =    0.00346675455362463910824462315246379209427513654098596403637231_wp
    real(wp),parameter :: b1311 =   -0.861264460105717678161432562258351242030270498966891201799225_wp
    real(wp),parameter :: b1312 =    0.908651882074050281096239478469262145034957129939256789178785_wp
    real(wp),parameter :: b140  =    0.0203926084654484010091511314676925686038504449562413004562382_wp
    real(wp),parameter :: b141  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b142  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b143  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b144  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b145  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b146  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b147  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b148  =    0.0869469392016685948675400555583947505833954460930940959577347_wp
    real(wp),parameter :: b149  =   -0.0191649630410149842286436611791405053287170076602337673587681_wp
    real(wp),parameter :: b1410 =    0.00655629159493663287364871573244244516034828755253746024098838_wp
    real(wp),parameter :: b1411 =    0.0987476128127434780903798528674033899738924968006632201445462_wp
    real(wp),parameter :: b1412 =    0.00535364695524996055083260173615567408717110247274021056118319_wp
    real(wp),parameter :: b1413 =    0.301167864010967916837091303817051676920059229784957479998077_wp
    real(wp),parameter :: b150  =    0.228410433917778099547115412893004398779136994596948545722283_wp
    real(wp),parameter :: b151  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b152  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b153  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b154  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b155  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b156  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b157  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b158  =   -0.498707400793025250635016567442511512138603770959682292383042_wp
    real(wp),parameter :: b159  =    0.134841168335724478552596703792570104791700727205981058201689_wp
    real(wp),parameter :: b1510 =   -0.0387458244055834158439904226924029230935161059142806805674360_wp
    real(wp),parameter :: b1511 =   -1.27473257473474844240388430824908952380979292713250350199641_wp
    real(wp),parameter :: b1512 =    1.43916364462877165201184452437038081875299303577911839630524_wp
    real(wp),parameter :: b1513 =   -0.214007467967990254219503540827349569639028092344812795499026_wp
    real(wp),parameter :: b1514 =    0.958202417754430239892724139109781371059908874605153648768037_wp
    real(wp),parameter :: b160  =    2.00222477655974203614249646012506747121440306225711721209798_wp
    real(wp),parameter :: b161  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b162  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b163  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b164  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b165  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b166  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b167  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b168  =    2.06701809961524912091954656438138595825411859673341600679555_wp
    real(wp),parameter :: b169  =    0.623978136086139541957471279831494466155292316167021080663140_wp
    real(wp),parameter :: b1610 =   -0.0462283685500311430283203554129062069391947101880112723185773_wp
    real(wp),parameter :: b1611 =   -8.84973288362649614860075246727118949286604835457092701094630_wp
    real(wp),parameter :: b1612 =    7.74257707850855976227437225791835589560188590785037197433615_wp
    real(wp),parameter :: b1613 =   -0.588358519250869210993353314127711745644125882130941202896436_wp
    real(wp),parameter :: b1614 =   -1.10683733362380649395704708016953056176195769617014899442903_wp
    real(wp),parameter :: b1615 =   -0.929529037579203999778397238291233214220788057511899747507074_wp
    real(wp),parameter :: b170  =    3.13789533412073442934451608989888796808161259330322100268310_wp
    real(wp),parameter :: b171  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b172  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b173  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b174  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b175  =    0.129146941900176461970759579482746551122871751501482634045487_wp
    real(wp),parameter :: b176  =    1.53073638102311295076342566143214939031177504112433874313011_wp
    real(wp),parameter :: b177  =    0.577874761129140052546751349454576715334892100418571882718036_wp
    real(wp),parameter :: b178  =    5.42088263055126683050056840891857421941300558851862156403363_wp
    real(wp),parameter :: b179  =    0.231546926034829304872663800877643660904880180835945693836936_wp
    real(wp),parameter :: b1710 =    0.0759292995578913560162301311785251873561801342333194895292058_wp
    real(wp),parameter :: b1711 =  -12.3729973380186513287414553402595806591349822617535905976253_wp
    real(wp),parameter :: b1712 =    9.85455883464769543935957209317369202080367765721777101906955_wp
    real(wp),parameter :: b1713 =    0.0859111431370436529579357709052367772889980495122329601159540_wp
    real(wp),parameter :: b1714 =   -5.65242752862643921117182090081762761180392602644189218673969_wp
    real(wp),parameter :: b1715 =   -1.94300935242819610883833776782364287728724899124166920477873_wp
    real(wp),parameter :: b1716 =   -0.128352601849404542018428714319344620742146491335612353559923_wp
    real(wp),parameter :: b180  =    1.38360054432196014878538118298167716825163268489922519995564_wp
    real(wp),parameter :: b181  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b182  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b183  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b184  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b185  =    0.00499528226645532360197793408420692800405891149406814091955810_wp
    real(wp),parameter :: b186  =    0.397918238819828997341739603001347156083435060931424970826304_wp
    real(wp),parameter :: b187  =    0.427930210752576611068192608300897981558240730580396406312359_wp
    real(wp),parameter :: b188  =   -1.30299107424475770916551439123047573342071475998399645982146_wp
    real(wp),parameter :: b189  =    0.661292278669377029097112528107513072734573412294008071500699_wp
    real(wp),parameter :: b1810 =   -0.144559774306954349765969393688703463900585822441545655530145_wp
    real(wp),parameter :: b1811 =   -6.96576034731798203467853867461083919356792248105919255460819_wp
    real(wp),parameter :: b1812 =    6.65808543235991748353408295542210450632193197576935120716437_wp
    real(wp),parameter :: b1813 =   -1.66997375108841486404695805725510845049807969199236227575796_wp
    real(wp),parameter :: b1814 =    2.06413702318035263832289040301832647130604651223986452170089_wp
    real(wp),parameter :: b1815 =   -0.674743962644306471862958129570837723192079875998405058648892_wp
    real(wp),parameter :: b1816 =   -0.00115618834794939500490703608435907610059605754935305582045729_wp
    real(wp),parameter :: b1817 =   -0.00544057908677007389319819914241631024660726585015012485938593_wp
    real(wp),parameter :: b190  =    0.951236297048287669474637975894973552166903378983475425758226_wp
    real(wp),parameter :: b191  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b192  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b193  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b194  =    0.217050632197958486317846256953159942875916353757734167684657_wp
    real(wp),parameter :: b195  =    0.0137455792075966759812907801835048190594443990939408530842918_wp
    real(wp),parameter :: b196  =   -0.0661095317267682844455831341498149531672668252085016565917546_wp
    real(wp),parameter :: b197  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b198  =    0.152281696736414447136604697040747131921486432699422112099617_wp
    real(wp),parameter :: b199  =   -0.337741018357599840802300793133998004354643424457539667670080_wp
    real(wp),parameter :: b1910 =   -0.0192825981633995781534949199286824400469353110630787982121133_wp
    real(wp),parameter :: b1911 =   -3.68259269696866809932409015535499603576312120746888880201882_wp
    real(wp),parameter :: b1912 =    3.16197870406982063541533528419683854018352080342887002331312_wp
    real(wp),parameter :: b1913 =   -0.370462522106885290716991856022051125477943482284080569177386_wp
    real(wp),parameter :: b1914 =   -0.0514974200365440434996434456698127984941168616474316871020314_wp
    real(wp),parameter :: b1915 =   -0.000829625532120152946787043541792848416659382675202720677536554_wp
    real(wp),parameter :: b1916 =    0.00000279801041419278598986586589070027583961355402640879503213503_wp
    real(wp),parameter :: b1917 =    0.0418603916412360287969841020776788461794119440689356178942252_wp
    real(wp),parameter :: b1918 =    0.279084255090877355915660874555379649966282167560126269290222_wp
    real(wp),parameter :: b200  =    0.103364471650010477570395435690481791543342708330349879244197_wp
    real(wp),parameter :: b201  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b202  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b203  =    0.124053094528946761061581889237115328211074784955180298044074_wp
    real(wp),parameter :: b204  =    0.483171167561032899288836480451962508724109257517289177302380_wp
    real(wp),parameter :: b205  =   -0.0387530245694763252085681443767620580395733302341368038804290_wp
    real(wp),parameter :: b206  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b207  =   -0.438313820361122420391059788940960176420682836652600698580091_wp
    real(wp),parameter :: b208  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b209  =   -0.218636633721676647685111485017151199362509373698288330593486_wp
    real(wp),parameter :: b2010 =   -0.0312334764394719229981634995206440349766174759626578122323015_wp
    real(wp),parameter :: b2011 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2012 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2013 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2014 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2015 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2016 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2017 =    0.0312334764394719229981634995206440349766174759626578122323015_wp
    real(wp),parameter :: b2018 =    0.218636633721676647685111485017151199362509373698288330593486_wp
    real(wp),parameter :: b2019 =    0.438313820361122420391059788940960176420682836652600698580091_wp
    real(wp),parameter :: b210  =    0.193333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: b211  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b212  =    0.220000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b213  =   -0.0800000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b214  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b215  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b216  =    0.0984256130499315928152900286856048243348202521491288575952143_wp
    real(wp),parameter :: b217  =   -0.196410889223054653446526504390100417677539095340135532418849_wp
    real(wp),parameter :: b218  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b219  =    0.436457930493068729391826122587949137609670676712525034763317_wp
    real(wp),parameter :: b2110 =    0.0652613721675721098560370939805555698350543810708414716730270_wp
    real(wp),parameter :: b2111 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2112 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2113 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2114 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2115 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2116 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2117 =   -0.0652613721675721098560370939805555698350543810708414716730270_wp
    real(wp),parameter :: b2118 =   -0.436457930493068729391826122587949137609670676712525034763317_wp
    real(wp),parameter :: b2119 =    0.196410889223054653446526504390100417677539095340135532418849_wp
    real(wp),parameter :: b2120 =   -0.0984256130499315928152900286856048243348202521491288575952143_wp
    real(wp),parameter :: b220  =   -0.216049382716049382716049382716049382716049382716049382716049_wp
    real(wp),parameter :: b221  =    0.771604938271604938271604938271604938271604938271604938271605_wp
    real(wp),parameter :: b222  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b223  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b224  =   -0.666666666666666666666666666666666666666666666666666666666667_wp
    real(wp),parameter :: b225  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b226  =   -0.390696469295978451446999802258495981249099665294395945559163_wp
    real(wp),parameter :: b227  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b228  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b229  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2210 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2211 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2212 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2213 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2214 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2215 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2216 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2217 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2218 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2219 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2220 =    0.390696469295978451446999802258495981249099665294395945559163_wp
    real(wp),parameter :: b2221 =    0.666666666666666666666666666666666666666666666666666666666667_wp
    real(wp),parameter :: b230  =    0.200000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b231  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b232  =   -0.164609053497942386831275720164609053497942386831275720164609_wp
    real(wp),parameter :: b233  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b234  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b235  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b236  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b237  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b238  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b239  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2310 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2311 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2312 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2313 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2314 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2315 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2316 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2317 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2318 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2319 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2320 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2321 =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b2322 =    0.164609053497942386831275720164609053497942386831275720164609_wp
    real(wp),parameter :: b240  =    1.47178724881110408452949550989023611293535315518571691939396_wp
    real(wp),parameter :: b241  =    0.787500000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b242  =    0.421296296296296296296296296296296296296296296296296296296296_wp
    real(wp),parameter :: b243  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b244  =    0.291666666666666666666666666666666666666666666666666666666667_wp
    real(wp),parameter :: b245  =    0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b246  =    0.348600717628329563206854421629657569274689947367847465753757_wp
    real(wp),parameter :: b247  =    0.229499544768994849582890233710555447073823569666506700662510_wp
    real(wp),parameter :: b248  =    5.79046485790481979159831978177003471098279506036722411333192_wp
    real(wp),parameter :: b249  =    0.418587511856506868874073759426596207226461447604248151080016_wp
    real(wp),parameter :: b2410 =    0.307039880222474002649653817490106690389251482313213999386651_wp
    real(wp),parameter :: b2411 =   -4.68700905350603332214256344683853248065574415794742040470287_wp
    real(wp),parameter :: b2412 =    3.13571665593802262152038152399873856554395436199962915429076_wp
    real(wp),parameter :: b2413 =    1.40134829710965720817510506275620441055845017313930508348898_wp
    real(wp),parameter :: b2414 =   -5.52931101439499023629010306005764336421276055777658156400910_wp
    real(wp),parameter :: b2415 =   -0.853138235508063349309546894974784906188927508039552519557498_wp
    real(wp),parameter :: b2416 =    0.103575780373610140411804607167772795518293914458500175573749_wp
    real(wp),parameter :: b2417 =   -0.140474416950600941142546901202132534870665923700034957196546_wp
    real(wp),parameter :: b2418 =   -0.418587511856506868874073759426596207226461447604248151080016_wp
    real(wp),parameter :: b2419 =   -0.229499544768994849582890233710555447073823569666506700662510_wp
    real(wp),parameter :: b2420 =   -0.348600717628329563206854421629657569274689947367847465753757_wp
    real(wp),parameter :: b2421 =   -0.291666666666666666666666666666666666666666666666666666666667_wp
    real(wp),parameter :: b2422 =   -0.421296296296296296296296296296296296296296296296296296296296_wp
    real(wp),parameter :: b2423 =   -0.787500000000000000000000000000000000000000000000000000000000_wp

    real(wp),dimension(me%n) :: f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,&
                                f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24

    if (h==zero) then
        xf = x
        terr = zero
        return
    end if

    call me%f(t+a0*h,  x,f0)
    call me%f(t+a1*h,  x+h*(b10*f0),f1)
    call me%f(t+a2*h,  x+h*(b20*f0  + b21 *f1),f2)
    call me%f(t+a3*h,  x+h*(b30*f0  + b31 *f1 + b32*f2),f3)
    call me%f(t+a4*h,  x+h*(b40*f0  + b41 *f1 + b42*f2  + b43*f3),f4)
    call me%f(t+a5*h,  x+h*(b50*f0  + b51 *f1 + b52*f2  + b53*f3  + &
                            b54*f4),f5)
    call me%f(t+a6*h,  x+h*(b60*f0  + b61 *f1 + b62*f2  + b63*f3  + &
                            b64*f4  + b65*f5),f6)
    call me%f(t+a7*h,  x+h*(b70*f0  + b71 *f1 + b72*f2  + b73*f3  + &
                            b74*f4  + b75*f5  + b76*f6),f7)
    call me%f(t+a8*h,  x+h*(b80*f0  + b81 *f1 + b82*f2  + b83*f3  + &
                            b84*f4  + b85*f5  + b86*f6  + b87*f7),f8)
    call me%f(t+a9*h,  x+h*(b90*f0  + b91 *f1 + b92*f2  + b93*f3  + &
                            b94*f4  + b95*f5  + b96*f6  + b97*f7  + &
                            b98*f8),f9)
    call me%f(t+a10*h, x+h*(b100*f0 + b101*f1 + b102*f2 + b103*f3 + &
                            b104*f4 + b105*f5 + b106*f6 + b107*f7 + &
                            b108*f8 + b109*f9),f10)
    call me%f(t+a11*h, x+h*(b110*f0 + b111*f1 + b112*f2 + b113*f3 + &
                            b114*f4 + b115*f5 + b116*f6 + b117*f7 + &
                            b118*f8 + b119*f9 + b1110*f10),f11)
    call me%f(t+a12*h, x+h*(b120*f0 + b121*f1 + b122*f2 + b123*f3 + &
                            b124*f4 + b125*f5 + b126*f6 + b127*f7 + &
                            b128*f8 + b129*f9 + b1210*f10 + b1211*f11),f12)
    call me%f(t+a13*h, x+h*(b130*f0 + b131*f1 + b132*f2 + b133*f3 + &
                            b134*f4 + b135*f5 + b136*f6 + b137*f7 + &
                            b138*f8 + b139*f9 + b1310*f10 + b1311*f11 + &
                            b1312*f12),f13)
    call me%f(t+a14*h, x+h*(b140*f0 + b141*f1 + b142*f2 + b143*f3 + &
                            b144*f4 + b145*f5 + b146*f6 + b147*f7 + &
                            b148*f8 + b149*f9 + b1410*f10 + b1411*f11 + &
                            b1412*f12 + b1413*f13),f14)
    call me%f(t+a15*h, x+h*(b150*f0 + b151*f1 + b152*f2 + b153*f3 + &
                            b154*f4 + b155*f5 + b156*f6 + b157*f7 + &
                            b158*f8 + b159*f9 + b1510*f10 + b1511*f11 + &
                            b1512*f12 + b1513*f13 + b1514*f14),f15)
    call me%f(t+a16*h, x+h*(b160*f0 + b161*f1 + b162*f2 + b163*f3 + &
                            b164*f4 + b165*f5 + b166*f6 + b167*f7 + &
                            b168*f8 + b169*f9 + b1610*f10 + b1611*f11 + &
                            b1612*f12 + b1613*f13 + b1614*f14 + b1615*f15),f16)
    call me%f(t+a17*h, x+h*(b170*f0 + b171*f1 + b172*f2 + b173*f3 + &
                            b174*f4 + b175*f5 + b176*f6 + b177*f7 + &
                            b178*f8 + b179*f9 + b1710*f10 + b1711*f11 + &
                            b1712*f12 + b1713*f13 + b1714*f14 + b1715*f15 + &
                            b1716*f16),f17)
    call me%f(t+a18*h, x+h*(b180*f0 + b181*f1 + b182*f2 + b183*f3 + &
                            b184*f4 + b185*f5 + b186*f6 + b187*f7 + &
                            b188*f8 + b189*f9 + b1810*f10 + b1811*f11 + &
                            b1812*f12 + b1813*f13 + b1814*f14 + b1815*f15 + &
                            b1816*f16 + b1817*f17),f18)
    call me%f(t+a19*h, x+h*(b190*f0 + b191*f1 + b192*f2 + b193*f3 + &
                            b194*f4 + b195*f5 + b196*f6 + b197*f7 + &
                            b198*f8 + b199*f9 + b1910*f10 + b1911*f11 + &
                            b1912*f12 + b1913*f13 + b1914*f14 + b1915*f15 + &
                            b1916*f16 + b1917*f17 + b1918*f18),f19)
    call me%f(t+a20*h, x+h*(b200*f0 + b201*f1 + b202*f2 + b203*f3 + &
                            b204*f4 + b205*f5 + b206*f6 + b207*f7 + &
                            b208*f8 + b209*f9 + b2010*f10 + b2011*f11 + &
                            b2012*f12 + b2013*f13 + b2014*f14 + b2015*f15 + &
                            b2016*f16 + b2017*f17 + b2018*f18 + b2019*f19),f20)
    call me%f(t+a21*h, x+h*(b210*f0 + b211*f1 + b212*f2 + b213*f3 + &
                            b214*f4 + b215*f5 + b216*f6 + b217*f7 + &
                            b218*f8 + b219*f9 + b2110*f10 + b2111*f11 + &
                            b2112*f12 + b2113*f13 + b2114*f14 + b2115*f15 + &
                            b2116*f16 + b2117*f17 + b2118*f18 + b2119*f19 + &
                            b2120*f20),f21)
    call me%f(t+a22*h, x+h*(b220*f0 + b221*f1 + b222*f2 + b223*f3 + &
                            b224*f4 + b225*f5 + b226*f6 + b227*f7 + &
                            b228*f8 + b229*f9 + b2210*f10 + b2211*f11 + &
                            b2212*f12 + b2213*f13 + b2214*f14 + b2215*f15 + &
                            b2216*f16 + b2217*f17 + b2218*f18 + b2219*f19 + &
                            b2220*f20 + b2221*f21),f22)
    call me%f(t+a23*h, x+h*(b230*f0 + b231*f1 + b232*f2 + b233*f3 + &
                            b234*f4 + b235*f5 + b236*f6 + b237*f7 + &
                            b238*f8 + b239*f9 + b2310*f10 + b2311*f11 + &
                            b2312*f12 + b2313*f13 + b2314*f14 + b2315*f15 + &
                            b2316*f16 + b2317*f17 + b2318*f18 + b2319*f19 + &
                            b2320*f20 + b2321*f21 + b2322*f22),f23)
    call me%f(t+a24*h, x+h*(b240*f0 + b241*f1 + b242*f2 + b243*f3 + &
                            b244*f4 + b245*f5 + b246*f6 + b247*f7 + &
                            b248*f8 + b249*f9 + b2410*f10 + b2411*f11 + &
                            b2412*f12 + b2413*f13 + b2414*f14 + b2415*f15 + &
                            b2416*f16 + b2417*f17 + b2418*f18 + b2419*f19 + &
                            b2420*f20 + b2421*f21 + b2422*f22 + b2423*f23),f24)

    xf = x+h*(  c0*f0   + &
                c1*f1   + &
                c2*f2   + &
                c3*f3   + &
                c4*f4   + &
                c5*f5   + &
                c6*f6   + &
                c7*f7   + &
                c8*f8   + &
                c9*f9   + &
                c10*f10 + &
                c11*f11 + &
                c12*f12 + &
                c13*f13 + &
                c14*f14 + &
                c15*f15 + &
                c16*f16 + &
                c17*f17 + &
                c18*f18 + &
                c19*f19 + &
                c20*f20 + &
                c21*f21 + &
                c22*f22 + &
                c23*f23 + &
                c24*f24 )

    terr = (49.0_wp/640.0_wp)*h*(f1-f23)

    end subroutine rkf1210
!*****************************************************************************************


!*****************************************************************************************
!>
!  Feagin's RK14(12) - a 14th-order method with an embedded 12th-order method.
!
!### Reference
!  * [coefficient file](http://sce.uhcl.edu/rungekutta/rk1412.txt)

    subroutine rkf1412(me,t,x,h,xf,terr)

    implicit none

    class(rkf1412_class),intent(inout)    :: me
    real(wp),intent(in)                  :: t     !! initial time
    real(wp),dimension(me%n),intent(in)  :: x     !! initial state
    real(wp),intent(in)                  :: h     !! time step
    real(wp),dimension(me%n),intent(out) :: xf    !! state at time `t+h`
    real(wp),dimension(me%n),intent(out) :: terr  !! truncation error estimate

    real(wp),parameter :: a0  = 0.000000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: a1  = 0.111111111111111111111111111111111111111111111111111111111111_wp
    real(wp),parameter :: a2  = 0.555555555555555555555555555555555555555555555555555555555556_wp
    real(wp),parameter :: a3  = 0.833333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: a4  = 0.333333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: a5  = 1.00000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: a6  = 0.669986979272772921764683785505998513938845229638460353285142_wp
    real(wp),parameter :: a7  = 0.297068384213818357389584716808219413223332094698915687379168_wp
    real(wp),parameter :: a8  = 0.727272727272727272727272727272727272727272727272727272727273_wp
    real(wp),parameter :: a9  = 0.140152799042188765276187487966946717629806463082532936287323_wp
    real(wp),parameter :: a10 = 0.700701039770150737151099854830749337941407049265546408969222_wp
    real(wp),parameter :: a11 = 0.363636363636363636363636363636363636363636363636363636363636_wp
    real(wp),parameter :: a12 = 0.263157894736842105263157894736842105263157894736842105263158_wp
    real(wp),parameter :: a13 = 0.0392172246650270859125196642501208648863714315266128052078483_wp
    real(wp),parameter :: a14 = 0.812917502928376762983393159278036506189612372617238550774312_wp
    real(wp),parameter :: a15 = 0.166666666666666666666666666666666666666666666666666666666667_wp
    real(wp),parameter :: a16 = 0.900000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: a17 = 0.0641299257451966923312771193896682809481096651615083225402924_wp
    real(wp),parameter :: a18 = 0.204149909283428848927744634301023405027149505241333751628870_wp
    real(wp),parameter :: a19 = 0.395350391048760565615671369827324372352227297456659450554577_wp
    real(wp),parameter :: a20 = 0.604649608951239434384328630172675627647772702543340549445423_wp
    real(wp),parameter :: a21 = 0.795850090716571151072255365698976594972850494758666248371130_wp
    real(wp),parameter :: a22 = 0.935870074254803307668722880610331719051890334838491677459708_wp
    real(wp),parameter :: a23 = 0.166666666666666666666666666666666666666666666666666666666667_wp
    real(wp),parameter :: a24 = 0.812917502928376762983393159278036506189612372617238550774312_wp
    real(wp),parameter :: a25 = 0.0392172246650270859125196642501208648863714315266128052078483_wp
    real(wp),parameter :: a26 = 0.363636363636363636363636363636363636363636363636363636363636_wp
    real(wp),parameter :: a27 = 0.700701039770150737151099854830749337941407049265546408969222_wp
    real(wp),parameter :: a28 = 0.140152799042188765276187487966946717629806463082532936287323_wp
    real(wp),parameter :: a29 = 0.297068384213818357389584716808219413223332094698915687379168_wp
    real(wp),parameter :: a30 = 0.669986979272772921764683785505998513938845229638460353285142_wp
    real(wp),parameter :: a31 = 0.333333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: a32 = 0.555555555555555555555555555555555555555555555555555555555556_wp
    real(wp),parameter :: a33 = 0.111111111111111111111111111111111111111111111111111111111111_wp
    real(wp),parameter :: a34 = 1.00000000000000000000000000000000000000000000000000000000000_wp

    real(wp),parameter :: c0  =  0.0178571428571428571428571428571428571428571428571428571428571_wp
    real(wp),parameter :: c1  =  0.00585937500000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c2  =  0.0117187500000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c3  =  0.0_wp
    real(wp),parameter :: c4  =  0.0175781250000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c5  =  0.0_wp
    real(wp),parameter :: c6  =  0.0234375000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c7  =  0.0292968750000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c8  =  0.0_wp
    real(wp),parameter :: c9  =  0.0351562500000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c10 =  0.0410156250000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c11 =  0.0468750000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c12 =  0.0_wp
    real(wp),parameter :: c13 =  0.0527343750000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c14 =  0.0585937500000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c15 =  0.0644531250000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c16 =  0.0_wp
    real(wp),parameter :: c17 =  0.105352113571753019691496032887878162227673083080523884041670_wp
    real(wp),parameter :: c18 =  0.170561346241752182382120338553874085887555487802790804737501_wp
    real(wp),parameter :: c19 =  0.206229397329351940783526485701104894741914286259542454077972_wp
    real(wp),parameter :: c20 =  0.206229397329351940783526485701104894741914286259542454077972_wp
    real(wp),parameter :: c21 =  0.170561346241752182382120338553874085887555487802790804737501_wp
    real(wp),parameter :: c22 =  0.105352113571753019691496032887878162227673083080523884041670_wp
    real(wp),parameter :: c23 = -0.0644531250000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c24 = -0.0585937500000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c25 = -0.0527343750000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c26 = -0.0468750000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c27 = -0.0410156250000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c28 = -0.0351562500000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c29 = -0.0292968750000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c30 = -0.0234375000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c31 = -0.0175781250000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c32 = -0.0117187500000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c33 = -0.00585937500000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: c34 =  0.0178571428571428571428571428571428571428571428571428571428571_wp

    real(wp),parameter :: b10   =     0.111111111111111111111111111111111111111111111111111111111111_wp
    real(wp),parameter :: b20   =    -0.833333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: b21   =     1.38888888888888888888888888888888888888888888888888888888889_wp
    real(wp),parameter :: b30   =     0.208333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: b31   =     0.0_wp
    real(wp),parameter :: b32   =     0.625000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b40   =     0.193333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: b41   =     0.0_wp
    real(wp),parameter :: b42   =     0.220000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b43   =    -0.0800000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b50   =     0.100000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b51   =     0.0_wp
    real(wp),parameter :: b52   =     0.0_wp
    real(wp),parameter :: b53   =     0.400000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b54   =     0.500000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b60   =     0.103484561636679776672993546511910344499744798201971316606663_wp
    real(wp),parameter :: b61   =     0.0_wp
    real(wp),parameter :: b62   =     0.0_wp
    real(wp),parameter :: b63   =     0.122068887306407222589644082868962077139592714834162134741275_wp
    real(wp),parameter :: b64   =     0.482574490331246622475134780125688112865919023850168049679402_wp
    real(wp),parameter :: b65   =    -0.0381409600015606999730886240005620205664113072478411477421970_wp
    real(wp),parameter :: b70   =     0.124380526654094412881516420868799316268491466359671423163289_wp
    real(wp),parameter :: b71   =     0.0_wp
    real(wp),parameter :: b72   =     0.0_wp
    real(wp),parameter :: b73   =     0.0_wp
    real(wp),parameter :: b74   =     0.226120282197584301422238662979202901196752320742633143965145_wp
    real(wp),parameter :: b75   =     0.0137885887618080880607695837016477814530969417491493385363543_wp
    real(wp),parameter :: b76   =    -0.0672210133996684449749399507414305856950086341525382182856200_wp
    real(wp),parameter :: b80   =     0.0936919065659673815530885456083005933866349695217750085655603_wp
    real(wp),parameter :: b81   =     0.0_wp
    real(wp),parameter :: b82   =     0.0_wp
    real(wp),parameter :: b83   =     0.0_wp
    real(wp),parameter :: b84   =     0.0_wp
    real(wp),parameter :: b85   =    -0.00613406843450510987229498995641664735620914507128858871007099_wp
    real(wp),parameter :: b86   =     0.216019825625503063708860097659866573490979433278117320188668_wp
    real(wp),parameter :: b87   =     0.423695063515761937337619073960976753205867469544123532683116_wp
    real(wp),parameter :: b90   =     0.0838479812409052664616968791372814085980533139224911131069335_wp
    real(wp),parameter :: b91   =     0.0_wp
    real(wp),parameter :: b92   =     0.0_wp
    real(wp),parameter :: b93   =     0.0_wp
    real(wp),parameter :: b94   =     0.0_wp
    real(wp),parameter :: b95   =    -0.0117949367100973814319755056031295775367961960590736150777613_wp
    real(wp),parameter :: b96   =    -0.247299020568812652339473838743194598325992840353340132697498_wp
    real(wp),parameter :: b97   =     0.0978080858367729012259313014081291665503740655476733940756599_wp
    real(wp),parameter :: b98   =     0.217590689243420631360008651767860318344168120024782176879989_wp
    real(wp),parameter :: b100   =     0.0615255359769428227954562389614314714333423969064821107453940_wp
    real(wp),parameter :: b101   =     0.0_wp
    real(wp),parameter :: b102   =     0.0_wp
    real(wp),parameter :: b103   =     0.0_wp
    real(wp),parameter :: b104   =     0.0_wp
    real(wp),parameter :: b105   =     0.00592232780324503308042990005798046524738389560444257136834990_wp
    real(wp),parameter :: b106   =     0.470326159963841112217224303205894113455362530746108825010848_wp
    real(wp),parameter :: b107   =     0.299688863848679000853981837096192399136831121671781279184194_wp
    real(wp),parameter :: b108   =    -0.247656877593994914689992276329810825853958069263947095548189_wp
    real(wp),parameter :: b109   =     0.110895029771437682893999851839061714522445173600678718208625_wp
    real(wp),parameter :: b110   =     0.0419700073362782579861792864787277787213483656543104611245994_wp
    real(wp),parameter :: b111   =     0.0_wp
    real(wp),parameter :: b112   =     0.0_wp
    real(wp),parameter :: b113   =     0.0_wp
    real(wp),parameter :: b114   =     0.0_wp
    real(wp),parameter :: b115   =    -0.00317987696266205093901912847692712407988609169703103952205634_wp
    real(wp),parameter :: b116   =     0.806397714906192077260821711520379506393543111567419750119748_wp
    real(wp),parameter :: b117   =     0.0975983126412388979093522850684288851314672048003054550357187_wp
    real(wp),parameter :: b118   =     0.778575578158398909027512446452927238999763460594181964958853_wp
    real(wp),parameter :: b119   =     0.204890423831599428189499202098105603312029235081420653574829_wp
    real(wp),parameter :: b1110  =   -1.56261579627468188307070943950527825211462892236424360892806_wp
    real(wp),parameter :: b120   =     0.0437726782233730163574465242495339811688214967071614123256973_wp
    real(wp),parameter :: b121   =     0.0_wp
    real(wp),parameter :: b122   =     0.0_wp
    real(wp),parameter :: b123   =     0.0_wp
    real(wp),parameter :: b124   =     0.0_wp
    real(wp),parameter :: b125   =     0.0_wp
    real(wp),parameter :: b126   =     0.0_wp
    real(wp),parameter :: b127   =     0.0_wp
    real(wp),parameter :: b128   =     0.00624365027520195208794358628580933625281631216903095917201250_wp
    real(wp),parameter :: b129   =     0.200043097109577314994435165469647856829066232218264969608768_wp
    real(wp),parameter :: b1210  =   -0.00805328367804983036823857162048902911923392887337029314844206_wp
    real(wp),parameter :: b1211  =    0.0211517528067396521915711903523399601316877825157550573051221_wp
    real(wp),parameter :: b130   =     0.0283499250363514563095023591920717312247137654896477097768495_wp
    real(wp),parameter :: b131   =     0.0_wp
    real(wp),parameter :: b132   =     0.0_wp
    real(wp),parameter :: b133   =     0.0_wp
    real(wp),parameter :: b134   =     0.0_wp
    real(wp),parameter :: b135   =     0.0_wp
    real(wp),parameter :: b136   =     0.0_wp
    real(wp),parameter :: b137   =     0.0_wp
    real(wp),parameter :: b138   =     0.00249163204855817407538949148805995149459884653585417680098222_wp
    real(wp),parameter :: b139   =     0.0230138787854593149638399846373742768772087122638142234223658_wp
    real(wp),parameter :: b1310  =   -0.00322155956692977098724476092467120878189463604760620461043308_wp
    real(wp),parameter :: b1311  =    0.00988442549447664668946335414487885256040819982786014648129297_wp
    real(wp),parameter :: b1312  =   -0.0213010771328887351384307642875927384886634565429572466632092_wp
    real(wp),parameter :: b140   =     0.343511894290243001049432234735147943083353174980701426268122_wp
    real(wp),parameter :: b141   =     0.0_wp
    real(wp),parameter :: b142   =     0.0_wp
    real(wp),parameter :: b143   =     0.0_wp
    real(wp),parameter :: b144   =     0.0_wp
    real(wp),parameter :: b145   =     0.0_wp
    real(wp),parameter :: b146   =     0.0_wp
    real(wp),parameter :: b147   =     0.0_wp
    real(wp),parameter :: b148   =     0.210451912023627385609097011999010655788807405225626700040882_wp
    real(wp),parameter :: b149   =     1.03427452057230411936482926828825709938667999698324740166559_wp
    real(wp),parameter :: b1410  =    0.00600303645864422487051240448206640574939078092406156945568306_wp
    real(wp),parameter :: b1411  =    0.855938125099619537578012106002407728915062652616416005816477_wp
    real(wp),parameter :: b1412  =   -0.977235005036766810872264852372525633013107656892839677696022_wp
    real(wp),parameter :: b1413  =   -0.660026980479294694616225013856327693720573981219974874776419_wp
    real(wp),parameter :: b150   =    -0.0143574001672168069538206399935076366657755954378399880691949_wp
    real(wp),parameter :: b151   =     0.0_wp
    real(wp),parameter :: b152   =     0.0_wp
    real(wp),parameter :: b153   =     0.0_wp
    real(wp),parameter :: b154   =     0.0_wp
    real(wp),parameter :: b155   =     0.0_wp
    real(wp),parameter :: b156   =     0.0_wp
    real(wp),parameter :: b157   =     0.0_wp
    real(wp),parameter :: b158   =    -0.0366253270049039970293685796848974791733119081733552207318285_wp
    real(wp),parameter :: b159   =     0.0350254975636213681976849406979846524346789082471103574920148_wp
    real(wp),parameter :: b1510  =    0.0360946016362113508931786658758335239823689929864237671348749_wp
    real(wp),parameter :: b1511  =   -0.0265219967553681106351595946834601923649627012457464284442911_wp
    real(wp),parameter :: b1512  =    0.0445699011305698119638911537508839908104336323082226770910408_wp
    real(wp),parameter :: b1513  =    0.124343093331358243286225595741786448038973408895106741855721_wp
    real(wp),parameter :: b1514  =    0.00413829693239480694403512496204335960426192908674476033832967_wp
    real(wp),parameter :: b160   =     0.356032404425120290975609116398089176264106222379748802654822_wp
    real(wp),parameter :: b161   =     0.0_wp
    real(wp),parameter :: b162   =     0.0_wp
    real(wp),parameter :: b163   =     0.0_wp
    real(wp),parameter :: b164   =     0.0_wp
    real(wp),parameter :: b165   =     0.0_wp
    real(wp),parameter :: b166   =     0.0_wp
    real(wp),parameter :: b167   =     0.0_wp
    real(wp),parameter :: b168   =    -0.450192758947562595966821779075956175110645100214763601190349_wp
    real(wp),parameter :: b169   =     0.430527907083710898626656292808782917793030154094709462877146_wp
    real(wp),parameter :: b1610  =    0.511973029011022237668556960394071692077125787030651386389972_wp
    real(wp),parameter :: b1611  =    0.908303638886404260390159124638110213997496214819904630546596_wp
    real(wp),parameter :: b1612  =   -1.23921093371933931757372469151534028854413889248605726186520_wp
    real(wp),parameter :: b1613  =   -0.649048661671761465141672348879062553905402831967191097656668_wp
    real(wp),parameter :: b1614  =    0.251708904586819292210480529948970541404887852931447491219418_wp
    real(wp),parameter :: b1615  =    0.779906470345586398810756795282334476023540593411550187024263_wp
    real(wp),parameter :: b170   =     0.0130935687406513066406881206418834980127470438213192487844956_wp
    real(wp),parameter :: b171   =     0.0_wp
    real(wp),parameter :: b172   =     0.0_wp
    real(wp),parameter :: b173   =     0.0_wp
    real(wp),parameter :: b174   =     0.0_wp
    real(wp),parameter :: b175   =     0.0_wp
    real(wp),parameter :: b176   =     0.0_wp
    real(wp),parameter :: b177   =     0.0_wp
    real(wp),parameter :: b178   =     0.0_wp
    real(wp),parameter :: b179   =     0.0_wp
    real(wp),parameter :: b1710  =    0.0_wp
    real(wp),parameter :: b1711  =    0.0_wp
    real(wp),parameter :: b1712  =   -0.0000932053067985113945908461962767108237858631509684667142124826_wp
    real(wp),parameter :: b1713  =    0.0505374334262299359640090443138590726770942344716122381702746_wp
    real(wp),parameter :: b1714  =    8.04470341944487979109579109610197797641311868930865361048975e-7_wp
    real(wp),parameter :: b1715  =    0.000591726029494171190528755742777717259844340971924321528178248_wp
    real(wp),parameter :: b1716  =   -4.01614722154557337064691684906375587732264247950093804676867e-7_wp
    real(wp),parameter :: b180   =     0.0207926484466053012541944544000765652167255206144373407979758_wp
    real(wp),parameter :: b181   =     0.0_wp
    real(wp),parameter :: b182   =     0.0_wp
    real(wp),parameter :: b183   =     0.0_wp
    real(wp),parameter :: b184   =     0.0_wp
    real(wp),parameter :: b185   =     0.0_wp
    real(wp),parameter :: b186   =     0.0_wp
    real(wp),parameter :: b187   =     0.0_wp
    real(wp),parameter :: b188   =     0.0_wp
    real(wp),parameter :: b189   =     0.0_wp
    real(wp),parameter :: b1810  =    0.0_wp
    real(wp),parameter :: b1811  =    0.0_wp
    real(wp),parameter :: b1812  =    0.000582695918800085915101902697837284108951406103029871570103075_wp
    real(wp),parameter :: b1813  =   -0.00801700732358815939083342186525852746640558465919633524655451_wp
    real(wp),parameter :: b1814  =    4.03847643847136940375170821743560570484117290330895506618968e-6_wp
    real(wp),parameter :: b1815  =    0.0854609998055506144225056114567535602510114622033622491802597_wp
    real(wp),parameter :: b1816  =   -2.04486480935804242706707569691004307904442837552677456232848e-6_wp
    real(wp),parameter :: b1817  =    0.105328578824431893399799402979093997354240904235172843146582_wp
    real(wp),parameter :: b190   =     1.40153449795736021415446247355771306718486452917597731683689_wp
    real(wp),parameter :: b191   =     0.0_wp
    real(wp),parameter :: b192   =     0.0_wp
    real(wp),parameter :: b193   =     0.0_wp
    real(wp),parameter :: b194   =     0.0_wp
    real(wp),parameter :: b195   =     0.0_wp
    real(wp),parameter :: b196   =     0.0_wp
    real(wp),parameter :: b197   =     0.0_wp
    real(wp),parameter :: b198   =     0.0_wp
    real(wp),parameter :: b199   =     0.0_wp
    real(wp),parameter :: b1910  =    0.0_wp
    real(wp),parameter :: b1911  =    0.0_wp
    real(wp),parameter :: b1912  =   -0.230252000984221261616272410367415621261130298274455611733277_wp
    real(wp),parameter :: b1913  =   -7.21106840466912905659582237106874247165856493509961561958267_wp
    real(wp),parameter :: b1914  =    0.00372901560694836335236995327852132340217759566678662385552634_wp
    real(wp),parameter :: b1915  =   -4.71415495727125020678778179392224757011323373221820091641216_wp
    real(wp),parameter :: b1916  =   -0.00176367657545349242053841995032797673574903886695600132759652_wp
    real(wp),parameter :: b1917  =    7.64130548038698765563029310880237651185173367813936997648198_wp
    real(wp),parameter :: b1918  =    3.50602043659751834989896082949744710968212949893375368243588_wp
    real(wp),parameter :: b200   =     11.9514650694120686799372385830716401674473610826553517297976_wp
    real(wp),parameter :: b201   =     0.0_wp
    real(wp),parameter :: b202   =     0.0_wp
    real(wp),parameter :: b203   =     0.0_wp
    real(wp),parameter :: b204   =     0.0_wp
    real(wp),parameter :: b205   =     0.0_wp
    real(wp),parameter :: b206   =     0.0_wp
    real(wp),parameter :: b207   =     0.0_wp
    real(wp),parameter :: b208   =     0.0_wp
    real(wp),parameter :: b209   =     0.0_wp
    real(wp),parameter :: b2010  =    0.0_wp
    real(wp),parameter :: b2011  =    0.0_wp
    real(wp),parameter :: b2012  =    7.79480932108175968783516700231764388220284279598980948538579_wp
    real(wp),parameter :: b2013  =   -56.4501393867325792523560991120904281440468100061340556540132_wp
    real(wp),parameter :: b2014  =    0.0912376306930644901344530449290276645709607450403673704844997_wp
    real(wp),parameter :: b2015  =   -12.7336279925434886201945524309199275038162717529918963305155_wp
    real(wp),parameter :: b2016  =    -0.0396895921904719712313542810939736674712383070433147873009352_wp
    real(wp),parameter :: b2017  =    54.4392141883570886996225765155307791861438378423305337073797_wp
    real(wp),parameter :: b2018  =    -3.64411637921569236846406990361350645806721478409266709351203_wp
    real(wp),parameter :: b2019  =    -0.804503249910509910899030787958579499315694913210787878260459_wp
    real(wp),parameter :: b210   =     -148.809426507100488427838868268647625561930612082148597076690_wp
    real(wp),parameter :: b211   =     0.0_wp
    real(wp),parameter :: b212   =     0.0_wp
    real(wp),parameter :: b213   =     0.0_wp
    real(wp),parameter :: b214   =     0.0_wp
    real(wp),parameter :: b215   =     0.0_wp
    real(wp),parameter :: b216   =     0.0_wp
    real(wp),parameter :: b217   =     0.0_wp
    real(wp),parameter :: b218   =     0.0_wp
    real(wp),parameter :: b219   =     0.0_wp
    real(wp),parameter :: b2110  =    0.0_wp
    real(wp),parameter :: b2111  =    0.0_wp
    real(wp),parameter :: b2112  =    -91.7295278291256484357935662402321623495228729036354276506427_wp
    real(wp),parameter :: b2113  =    707.656144971598359834575719286335716154821128966649565194286_wp
    real(wp),parameter :: b2114  =    -1.10563611857482440905296961311590930801338308942637769555540_wp
    real(wp),parameter :: b2115  =    176.134591883811372587859898076055660406999516762301689616841_wp
    real(wp),parameter :: b2116  =    0.491384824214880662268898345164454557416884631402764792538746_wp
    real(wp),parameter :: b2117  =    -684.278000449814944358237535610895081956077167893600278300805_wp
    real(wp),parameter :: b2118  =    27.9910604998398258984224332124380407446002518400668657974589_wp
    real(wp),parameter :: b2119  =    13.1939710030282333443670964371153238435064159623744975073252_wp
    real(wp),parameter :: b2120  =    1.25128781283980445450114974148056006317268830077396406361417_wp
    real(wp),parameter :: b220   =     -9.67307946948196763644126118433219395839951408571877262880482_wp
    real(wp),parameter :: b221   =     0.0_wp
    real(wp),parameter :: b222   =     0.0_wp
    real(wp),parameter :: b223   =     0.0_wp
    real(wp),parameter :: b224   =     0.0_wp
    real(wp),parameter :: b225   =     0.0_wp
    real(wp),parameter :: b226   =     0.0_wp
    real(wp),parameter :: b227   =     0.0_wp
    real(wp),parameter :: b228   =     0.0_wp
    real(wp),parameter :: b229   =     0.0_wp
    real(wp),parameter :: b2210  =    0.0_wp
    real(wp),parameter :: b2211  =    0.0_wp
    real(wp),parameter :: b2212  =    -4.46990150858505531443846227701960360497830681408751431146712_wp
    real(wp),parameter :: b2213  =    45.5127128690952681968241950400052751178905907817398483534845_wp
    real(wp),parameter :: b2214  =    -0.0713085086183826912791492024438246129930559805352394367050813_wp
    real(wp),parameter :: b2215  =    11.2273614068412741582590624479939384207826800776794485051540_wp
    real(wp),parameter :: b2216  =    0.126244376717622724516237912909138809361786889819105426371393_wp
    real(wp),parameter :: b2217  =    -43.5439339549483313605810624907242107623814304467621407753424_wp
    real(wp),parameter :: b2218  =    0.787174307543058978398792994996550902064546091443233850464377_wp
    real(wp),parameter :: b2219  =    0.532264696744684215669300708603886690785395776821503851830821_wp
    real(wp),parameter :: b2220  =    0.422422733996325326010225127471388772575086538809603346825334_wp
    real(wp),parameter :: b2221  =    0.0859131249503067107308438031499859443441115056294154956487671_wp
    real(wp),parameter :: b230   =     -10.0664032447054702403396606900426891472202824757968765569183_wp
    real(wp),parameter :: b231   =     0.0_wp
    real(wp),parameter :: b232   =     0.0_wp
    real(wp),parameter :: b233   =     0.0_wp
    real(wp),parameter :: b234   =     0.0_wp
    real(wp),parameter :: b235   =     0.0_wp
    real(wp),parameter :: b236   =     0.0_wp
    real(wp),parameter :: b237   =     0.0_wp
    real(wp),parameter :: b238   =    -0.0366253270049039970293685796848974791733119081733552207318285_wp
    real(wp),parameter :: b239   =    0.0350254975636213681976849406979846524346789082471103574920148_wp
    real(wp),parameter :: b2310  =    0.0360946016362113508931786658758335239823689929864237671348749_wp
    real(wp),parameter :: b2311  =    -0.0265219967553681106351595946834601923649627012457464284442911_wp
    real(wp),parameter :: b2312  =    -6.27088972181464143590553149478871603839356122957396018530209_wp
    real(wp),parameter :: b2313  =    48.2079237442562989090702103008195063923492593141636117832993_wp
    real(wp),parameter :: b2314  =    -0.0694471689136165640882395180583732834557754169149088630301342_wp
    real(wp),parameter :: b2315  =    12.6810690204850295698341370913609807066108483811412127009785_wp
    real(wp),parameter :: b2316  =    0.0119671168968323754838161435501011294100927813964199613229864_wp
    real(wp),parameter :: b2317  =    -46.7249764992482408003358268242662695593201321659795608950429_wp
    real(wp),parameter :: b2318  =    1.33029613326626711314710039298216591399033511191227101321435_wp
    real(wp),parameter :: b2319  =    1.00766787503398298353438903619926657771162717793661719708370_wp
    real(wp),parameter :: b2320  =    0.0209512051933665091664122388475480702892770753864487241177616_wp
    real(wp),parameter :: b2321  =    0.0210134706331264177317735424331396407424412188443757490871603_wp
    real(wp),parameter :: b2322  =    0.00952196014417121794175101542454575907376360233658356240547761_wp
    real(wp),parameter :: b240   =     -409.478081677743708772589097409370357624424341606752069725341_wp
    real(wp),parameter :: b241   =     0.0_wp
    real(wp),parameter :: b242   =     0.0_wp
    real(wp),parameter :: b243   =     0.0_wp
    real(wp),parameter :: b244   =     0.0_wp
    real(wp),parameter :: b245   =     0.0_wp
    real(wp),parameter :: b246   =     0.0_wp
    real(wp),parameter :: b247   =     0.0_wp
    real(wp),parameter :: b248   =    0.210451912023627385609097011999010655788807405225626700040882_wp
    real(wp),parameter :: b249   =    1.03427452057230411936482926828825709938667999698324740166559_wp
    real(wp),parameter :: b2410  =    0.00600303645864422487051240448206640574939078092406156945568306_wp
    real(wp),parameter :: b2411  =    0.855938125099619537578012106002407728915062652616416005816477_wp
    real(wp),parameter :: b2412  =    -250.516998547447860492777657729316130386584050420782075966990_wp
    real(wp),parameter :: b2413  =    1946.42466652388427766053750328264758595829850895761428240231_wp
    real(wp),parameter :: b2414  =    -3.04503882102310365506105809086860882786950544097602101685174_wp
    real(wp),parameter :: b2415  =    490.626379528281713521208265299168083841598542274061671576230_wp
    real(wp),parameter :: b2416  =    1.56647589531270907115484067013597445739595615245966775329993_wp
    real(wp),parameter :: b2417  =    -1881.97428994011173362217267377035870619215906638453056643641_wp
    real(wp),parameter :: b2418  =    75.2592224724847175278837713643303149821620618914245864351135_wp
    real(wp),parameter :: b2419  =    34.5734356980331067622434344736554689696728644793551014989002_wp
    real(wp),parameter :: b2420  =    3.21147679440968961435417361847073755169022966748891627882572_wp
    real(wp),parameter :: b2421  =    -0.460408041738414391307201404237058848867245095265382820823055_wp
    real(wp),parameter :: b2422  =    -0.0870718339841810522431884137957986245724252047388936572215438_wp
    real(wp),parameter :: b2423  =    -7.39351814158303067567016952195521063999185773249132944724553_wp
    real(wp),parameter :: b250   =     3.43347475853550878921093496257596781120623891072008459930197_wp
    real(wp),parameter :: b251   =     0.0_wp
    real(wp),parameter :: b252   =     0.0_wp
    real(wp),parameter :: b253   =     0.0_wp
    real(wp),parameter :: b254   =     0.0_wp
    real(wp),parameter :: b255   =     0.0_wp
    real(wp),parameter :: b256   =     0.0_wp
    real(wp),parameter :: b257   =     0.0_wp
    real(wp),parameter :: b258   =     0.00249163204855817407538949148805995149459884653585417680098222_wp
    real(wp),parameter :: b259   =     0.0230138787854593149638399846373742768772087122638142234223658_wp
    real(wp),parameter :: b2510  =    -0.00322155956692977098724476092467120878189463604760620461043308_wp
    real(wp),parameter :: b2511  =    0.00988442549447664668946335414487885256040819982786014648129297_wp
    real(wp),parameter :: b2512  =    2.16252799377922507788307841904757354045759225335732707916530_wp
    real(wp),parameter :: b2513  =    -16.2699864546457421328065640660139489006987552040228852402716_wp
    real(wp),parameter :: b2514  =    -0.128534502120524552843583417470935010538029037542654506231743_wp
    real(wp),parameter :: b2515  =    -8.98915042666504253089307820833379330486511746063552853023189_wp
    real(wp),parameter :: b2516  =    -0.00348595363232025333387080201851013650192401767250513765000963_wp
    real(wp),parameter :: b2517  =    15.7936194113339807536235187388695574135853387025139738341334_wp
    real(wp),parameter :: b2518  =    -0.574403330914095065628165482017335820148383663195675408024658_wp
    real(wp),parameter :: b2519  =    -0.345602039021393296692722496608124982535237228827655306030152_wp
    real(wp),parameter :: b2520  =    -0.00662241490206585091731619991383757781133067992707418687587487_wp
    real(wp),parameter :: b2521  =    -0.00777788129242204164032546458607364309759347209626759111946150_wp
    real(wp),parameter :: b2522  =    -0.00356084192402274913338827232697437364675240818791706587952939_wp
    real(wp),parameter :: b2523  =    4.79282506449930799649797749629840189457296934139359048988332_wp
    real(wp),parameter :: b2524  =    0.153725464873068577844576387402512082757034273069877432944621_wp
    real(wp),parameter :: b260   =     32.3038520871985442326994734440031535091364975047784630088983_wp
    real(wp),parameter :: b261   =     0.0_wp
    real(wp),parameter :: b262   =     0.0_wp
    real(wp),parameter :: b263   =     0.0_wp
    real(wp),parameter :: b264   =     0.0_wp
    real(wp),parameter :: b265   =    -0.00317987696266205093901912847692712407988609169703103952205634_wp
    real(wp),parameter :: b266   =    0.806397714906192077260821711520379506393543111567419750119748_wp
    real(wp),parameter :: b267   =    0.0975983126412388979093522850684288851314672048003054550357187_wp
    real(wp),parameter :: b268   =    0.778575578158398909027512446452927238999763460594181964958853_wp
    real(wp),parameter :: b269   =    0.204890423831599428189499202098105603312029235081420653574829_wp
    real(wp),parameter :: b2610  =    -1.56261579627468188307070943950527825211462892236424360892806_wp
    real(wp),parameter :: b2611  =    0.0_wp
    real(wp),parameter :: b2612  =    16.3429891882310570648504243973927174708753353504154550405647_wp
    real(wp),parameter :: b2613  =    -154.544555293543621230730189631471036399316683669609116705323_wp
    real(wp),parameter :: b2614  =    1.56971088703334872692034283417621761466263593582497085955201_wp
    real(wp),parameter :: b2615  =    3.27685545087248131321429817269900731165522404974733504794135_wp
    real(wp),parameter :: b2616  =    -0.0503489245193653176348040727199783626534081095691632396802451_wp
    real(wp),parameter :: b2617  =    153.321151858041665070593767885914694011224363102594556731397_wp
    real(wp),parameter :: b2618  =    7.17568186327720495846766484814784143567826308034865369443637_wp
    real(wp),parameter :: b2619  =    -2.94036748675300481945917659896930989215320594380777597403592_wp
    real(wp),parameter :: b2620  =    -0.0665845946076803144470749676022628870281920493197256887985612_wp
    real(wp),parameter :: b2621  =    -0.0462346054990843661229248668562217261176966514016859284197145_wp
    real(wp),parameter :: b2622  =    -0.0204198733585679401539388228617269778848579774821581777675337_wp
    real(wp),parameter :: b2623  =    -53.3523106438735850515953441165998107974045090495791591218714_wp
    real(wp),parameter :: b2624  =    -1.35548714715078654978732186705996404017554501614191325114947_wp
    real(wp),parameter :: b2625  =    -1.57196275801232751882901735171459249177687219114442583461866_wp
    real(wp),parameter :: b270   =     -16.6451467486341512872031294403931758764560371130818978459405_wp
    real(wp),parameter :: b271   =     0.0_wp
    real(wp),parameter :: b272   =     0.0_wp
    real(wp),parameter :: b273   =     0.0_wp
    real(wp),parameter :: b274   =     0.0_wp
    real(wp),parameter :: b275   =     0.00592232780324503308042990005798046524738389560444257136834990_wp
    real(wp),parameter :: b276   =     0.470326159963841112217224303205894113455362530746108825010848_wp
    real(wp),parameter :: b277   =     0.299688863848679000853981837096192399136831121671781279184194_wp
    real(wp),parameter :: b278   =    -0.247656877593994914689992276329810825853958069263947095548189_wp
    real(wp),parameter :: b279   =     0.110895029771437682893999851839061714522445173600678718208625_wp
    real(wp),parameter :: b2710  =    0.0_wp
    real(wp),parameter :: b2711  =    -0.491719043846229147070666628704194097678081907210673044988866_wp
    real(wp),parameter :: b2712  =    -11.4743154427289496968389492564352536350842454130853175250727_wp
    real(wp),parameter :: b2713  =    80.2593166576230272541702485886484400152793366623589989106256_wp
    real(wp),parameter :: b2714  =    -0.384132303980042847625312526759029103746926841342088219165648_wp
    real(wp),parameter :: b2715  =    7.28147667468107583471326950926136115767612581862877764249646_wp
    real(wp),parameter :: b2716  =    -0.132699384612248379510571708176035274836827341616751884314074_wp
    real(wp),parameter :: b2717  =    -81.0799832525730726674679289752255240006070716633632990308935_wp
    real(wp),parameter :: b2718  =    -1.25037492835620639521768185656179119962253747492403205797494_wp
    real(wp),parameter :: b2719  =    2.59263594969543681023776379504377324994226447359296887778718_wp
    real(wp),parameter :: b2720  =    -0.301440298346404539830163997260526875264431537275641495291993_wp
    real(wp),parameter :: b2721  =    0.221384460789832337451706451572773791695246839057318414301020_wp
    real(wp),parameter :: b2722  =    0.0827577274771892931955989870974693152996276435429809890551210_wp
    real(wp),parameter :: b2723  =    18.9960662040611520464672450037243263998175161412237156872211_wp
    real(wp),parameter :: b2724  =    0.269231946409639685623468015128334167460051910348912845121977_wp
    real(wp),parameter :: b2725  =    1.62674827447066537462989364929628933988125029284183680279020_wp
    real(wp),parameter :: b2726  =    0.491719043846229147070666628704194097678081907210673044988866_wp
    real(wp),parameter :: b280   =     0.0838479812409052664616968791372814085980533139224911131069335_wp
    real(wp),parameter :: b281   =    0.0_wp
    real(wp),parameter :: b282   =    0.0_wp
    real(wp),parameter :: b283   =    0.0_wp
    real(wp),parameter :: b284   =    0.0_wp
    real(wp),parameter :: b285   =    -0.0117949367100973814319755056031295775367961960590736150777613_wp
    real(wp),parameter :: b286   =    -0.247299020568812652339473838743194598325992840353340132697498_wp
    real(wp),parameter :: b287   =    0.0978080858367729012259313014081291665503740655476733940756599_wp
    real(wp),parameter :: b288   =    0.217590689243420631360008651767860318344168120024782176879989_wp
    real(wp),parameter :: b289   =    0.0_wp
    real(wp),parameter :: b2810  =    0.137585606763325224865659632196787746647447222975084865975440_wp
    real(wp),parameter :: b2811  =    0.0439870229715046685058790092341545026046103890294261359042581_wp
    real(wp),parameter :: b2812  =    0.0_wp
    real(wp),parameter :: b2813  =    -0.513700813768193341957004456618630303738757363641964030086972_wp
    real(wp),parameter :: b2814  =    0.826355691151315508644211308399153458701423158616168576922372_wp
    real(wp),parameter :: b2815  =    25.7018139719811832625873882972519939511136556341960074626615_wp
    real(wp),parameter :: b2816  =    0.0_wp
    real(wp),parameter :: b2817  =    0.0_wp
    real(wp),parameter :: b2818  =    0.0_wp
    real(wp),parameter :: b2819  =    0.0_wp
    real(wp),parameter :: b2820  =    0.0_wp
    real(wp),parameter :: b2821  =    0.0_wp
    real(wp),parameter :: b2822  =    0.0_wp
    real(wp),parameter :: b2823  =    -25.7018139719811832625873882972519939511136556341960074626615_wp
    real(wp),parameter :: b2824  =    -0.826355691151315508644211308399153458701423158616168576922372_wp
    real(wp),parameter :: b2825  =    0.513700813768193341957004456618630303738757363641964030086972_wp
    real(wp),parameter :: b2826  =    -0.0439870229715046685058790092341545026046103890294261359042581_wp
    real(wp),parameter :: b2827  =    -0.137585606763325224865659632196787746647447222975084865975440_wp
    real(wp),parameter :: b290   =     0.124380526654094412881516420868799316268491466359671423163289_wp
    real(wp),parameter :: b291   =    0.0_wp
    real(wp),parameter :: b292   =    0.0_wp
    real(wp),parameter :: b293   =    0.0_wp
    real(wp),parameter :: b294   =    0.226120282197584301422238662979202901196752320742633143965145_wp
    real(wp),parameter :: b295   =    0.0137885887618080880607695837016477814530969417491493385363543_wp
    real(wp),parameter :: b296   =    -0.0672210133996684449749399507414305856950086341525382182856200_wp
    real(wp),parameter :: b297   =    0.0_wp
    real(wp),parameter :: b298   =    0.0_wp
    real(wp),parameter :: b299   =    -0.856238975085428354755349769879501772112121597411563802855067_wp
    real(wp),parameter :: b2910  =    -1.96337522866858908928262850028093813988180440518267404553576_wp
    real(wp),parameter :: b2911  =    -0.232332822724119401237246257308921847250108199230419994978218_wp
    real(wp),parameter :: b2912  =    0.0_wp
    real(wp),parameter :: b2913  =    4.30660719086453349461668936876562947772432562053478092626764_wp
    real(wp),parameter :: b2914  =    -2.92722963249465482659787911202390446687687394950633612630592_wp
    real(wp),parameter :: b2915  =    -82.3131666397858944454492334105458707735761966428138676971041_wp
    real(wp),parameter :: b2916  =    0.0_wp
    real(wp),parameter :: b2917  =    0.0_wp
    real(wp),parameter :: b2918  =    0.0_wp
    real(wp),parameter :: b2919  =    0.0_wp
    real(wp),parameter :: b2920  =    0.0_wp
    real(wp),parameter :: b2921  =    0.0_wp
    real(wp),parameter :: b2922  =    0.0_wp
    real(wp),parameter :: b2923  =    82.3131666397858944454492334105458707735761966428138676971041_wp
    real(wp),parameter :: b2924  =    2.92722963249465482659787911202390446687687394950633612630592_wp
    real(wp),parameter :: b2925  =    -4.30660719086453349461668936876562947772432562053478092626764_wp
    real(wp),parameter :: b2926  =    0.232332822724119401237246257308921847250108199230419994978218_wp
    real(wp),parameter :: b2927  =    1.96337522866858908928262850028093813988180440518267404553576_wp
    real(wp),parameter :: b2928  =    0.856238975085428354755349769879501772112121597411563802855067_wp
    real(wp),parameter :: b300   =     0.103484561636679776672993546511910344499744798201971316606663_wp
    real(wp),parameter :: b301   =    0.0_wp
    real(wp),parameter :: b302   =    0.0_wp
    real(wp),parameter :: b303   =    0.122068887306407222589644082868962077139592714834162134741275_wp
    real(wp),parameter :: b304   =    0.482574490331246622475134780125688112865919023850168049679402_wp
    real(wp),parameter :: b305   =    -0.0381409600015606999730886240005620205664113072478411477421970_wp
    real(wp),parameter :: b306   =    0.0_wp
    real(wp),parameter :: b307   =    -0.550499525310802324138388507020508177411414311000037561712836_wp
    real(wp),parameter :: b308   =    0.0_wp
    real(wp),parameter :: b309   =    -0.711915811585189227887648262043794387578291882406745570495765_wp
    real(wp),parameter :: b3010  =    -0.584129605671551340432988730158480872095335329645227595707052_wp
    real(wp),parameter :: b3011  =    0.0_wp
    real(wp),parameter :: b3012  =    0.0_wp
    real(wp),parameter :: b3013  =    2.11046308125864932128717300046622750300375054278936987850718_wp
    real(wp),parameter :: b3014  =    -0.0837494736739572135525742023001037992695260175335123517729291_wp
    real(wp),parameter :: b3015  =    5.10021499072320914075295969043344113107545060862804249161191_wp
    real(wp),parameter :: b3016  =    0.0_wp
    real(wp),parameter :: b3017  =    0.0_wp
    real(wp),parameter :: b3018  =    0.0_wp
    real(wp),parameter :: b3019  =    0.0_wp
    real(wp),parameter :: b3020  =    0.0_wp
    real(wp),parameter :: b3021  =    0.0_wp
    real(wp),parameter :: b3022  =    0.0_wp
    real(wp),parameter :: b3023  =    -5.10021499072320914075295969043344113107545060862804249161191_wp
    real(wp),parameter :: b3024  =    0.0837494736739572135525742023001037992695260175335123517729291_wp
    real(wp),parameter :: b3025  =    -2.11046308125864932128717300046622750300375054278936987850718_wp
    real(wp),parameter :: b3026  =    0.0_wp
    real(wp),parameter :: b3027  =    0.584129605671551340432988730158480872095335329645227595707052_wp
    real(wp),parameter :: b3028  =    0.711915811585189227887648262043794387578291882406745570495765_wp
    real(wp),parameter :: b3029  =    0.550499525310802324138388507020508177411414311000037561712836_wp
    real(wp),parameter :: b310   =     0.193333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: b311   =    0.0_wp
    real(wp),parameter :: b312   =    0.220000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b313   =    -0.0800000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b314   =    0.0_wp
    real(wp),parameter :: b315   =    0.0_wp
    real(wp),parameter :: b316   =    0.109993425580724703919462404865068340845119058295846426463652_wp
    real(wp),parameter :: b317   =    -0.254297048076270161384068506997153122141835626976703920846242_wp
    real(wp),parameter :: b318   =    0.0_wp
    real(wp),parameter :: b319   =    0.865570777116694254343770343821098281832847401233011859346737_wp
    real(wp),parameter :: b3110  =    3.32416449114093083106799552786572018336860092936986407160200_wp
    real(wp),parameter :: b3111  =    0.0_wp
    real(wp),parameter :: b3112  =    0.0_wp
    real(wp),parameter :: b3113  =    -12.0102223315977933882352385148661841260301942633996815127277_wp
    real(wp),parameter :: b3114  =    0.476601466242493239430442776862061899602963782003580209476163_wp
    real(wp),parameter :: b3115  =    -29.0243011221036390525802623213654099596251221332470910692353_wp
    real(wp),parameter :: b3116  =    0.0_wp
    real(wp),parameter :: b3117  =    0.0_wp
    real(wp),parameter :: b3118  =    0.0_wp
    real(wp),parameter :: b3119  =    0.0_wp
    real(wp),parameter :: b3120  =    0.0_wp
    real(wp),parameter :: b3121  =    0.0_wp
    real(wp),parameter :: b3122  =    0.0_wp
    real(wp),parameter :: b3123  =    29.0243011221036390525802623213654099596251221332470910692353_wp
    real(wp),parameter :: b3124  =    -0.476601466242493239430442776862061899602963782003580209476163_wp
    real(wp),parameter :: b3125  =    12.0102223315977933882352385148661841260301942633996815127277_wp
    real(wp),parameter :: b3126  =    0.0_wp
    real(wp),parameter :: b3127  =    -3.32416449114093083106799552786572018336860092936986407160200_wp
    real(wp),parameter :: b3128  =    -0.865570777116694254343770343821098281832847401233011859346737_wp
    real(wp),parameter :: b3129  =    0.254297048076270161384068506997153122141835626976703920846242_wp
    real(wp),parameter :: b3130  =    -0.109993425580724703919462404865068340845119058295846426463652_wp
    real(wp),parameter :: b320   =     -0.833333333333333333333333333333333333333333333333333333333333_wp
    real(wp),parameter :: b321   =    1.38888888888888888888888888888888888888888888888888888888889_wp
    real(wp),parameter :: b322   =    0.0_wp
    real(wp),parameter :: b323   =    0.0_wp
    real(wp),parameter :: b324   =    -0.750000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b325   =    0.0_wp
    real(wp),parameter :: b326   =    -0.492529543718026304422682049114021320200214681580657784719074_wp
    real(wp),parameter :: b327   =    0.0_wp
    real(wp),parameter :: b328   =    0.0_wp
    real(wp),parameter :: b329   =    0.0_wp
    real(wp),parameter :: b3210  =    0.0_wp
    real(wp),parameter :: b3211  =    0.0_wp
    real(wp),parameter :: b3212  =    0.0_wp
    real(wp),parameter :: b3213  =    0.0_wp
    real(wp),parameter :: b3214  =    0.0_wp
    real(wp),parameter :: b3215  =    0.0_wp
    real(wp),parameter :: b3216  =    0.0_wp
    real(wp),parameter :: b3217  =    0.0_wp
    real(wp),parameter :: b3218  =    0.0_wp
    real(wp),parameter :: b3219  =    0.0_wp
    real(wp),parameter :: b3220  =    0.0_wp
    real(wp),parameter :: b3221  =    0.0_wp
    real(wp),parameter :: b3222  =    0.0_wp
    real(wp),parameter :: b3223  =    0.0_wp
    real(wp),parameter :: b3224  =    0.0_wp
    real(wp),parameter :: b3225  =    0.0_wp
    real(wp),parameter :: b3226  =    0.0_wp
    real(wp),parameter :: b3227  =    0.0_wp
    real(wp),parameter :: b3228  =    0.0_wp
    real(wp),parameter :: b3229  =    0.0_wp
    real(wp),parameter :: b3230  =    0.492529543718026304422682049114021320200214681580657784719074_wp
    real(wp),parameter :: b3231  =    0.750000000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b330  =    0.111111111111111111111111111111111111111111111111111111111111_wp
    real(wp),parameter :: b331  =    0.0_wp
    real(wp),parameter :: b332  =   -0.222222222222222222222222222222222222222222222222222222222222_wp
    real(wp),parameter :: b333  =    0.0_wp
    real(wp),parameter :: b334  =    0.0_wp
    real(wp),parameter :: b335  =    0.0_wp
    real(wp),parameter :: b336  =    0.0_wp
    real(wp),parameter :: b337  =    0.0_wp
    real(wp),parameter :: b338  =    0.0_wp
    real(wp),parameter :: b339  =    0.0_wp
    real(wp),parameter :: b3310  =    0.0_wp
    real(wp),parameter :: b3311  =    0.0_wp
    real(wp),parameter :: b3312  =    0.0_wp
    real(wp),parameter :: b3313  =    0.0_wp
    real(wp),parameter :: b3314  =    0.0_wp
    real(wp),parameter :: b3315  =    0.0_wp
    real(wp),parameter :: b3316  =    0.0_wp
    real(wp),parameter :: b3317  =    0.0_wp
    real(wp),parameter :: b3318  =    0.0_wp
    real(wp),parameter :: b3319  =    0.0_wp
    real(wp),parameter :: b3320  =    0.0_wp
    real(wp),parameter :: b3321  =    0.0_wp
    real(wp),parameter :: b3322  =    0.0_wp
    real(wp),parameter :: b3323  =    0.0_wp
    real(wp),parameter :: b3324  =    0.0_wp
    real(wp),parameter :: b3325  =    0.0_wp
    real(wp),parameter :: b3326  =    0.0_wp
    real(wp),parameter :: b3327  =    0.0_wp
    real(wp),parameter :: b3328  =    0.0_wp
    real(wp),parameter :: b3329  =    0.0_wp
    real(wp),parameter :: b3330  =    0.0_wp
    real(wp),parameter :: b3331  =    0.0_wp
    real(wp),parameter :: b3332  =    0.222222222222222222222222222222222222222222222222222222222222_wp
    real(wp),parameter :: b340  =    0.285835140388971558796088842163836414852927537894596466840753_wp
    real(wp),parameter :: b341  =    0.291666666666666666666666666666666666666666666666666666666667_wp
    real(wp),parameter :: b342  =    0.218750000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b343  =    0.0_wp
    real(wp),parameter :: b344  =    0.164062500000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b345  =    0.0_wp
    real(wp),parameter :: b346  =    0.218194354945556658327188241581352107093288824322187941141516_wp
    real(wp),parameter :: b347  =    0.180392898478697766863635221946775437719620053641849228562435_wp
    real(wp),parameter :: b348  =    0.0_wp
    real(wp),parameter :: b349  =    0.205713839404845018859120755122929542277570094982808905393991_wp
    real(wp),parameter :: b3410  =    0.242715791581770239970282927959446515762745971386670541948576_wp
    real(wp),parameter :: b3411  =    0.246465780813629305833609291181891407799228103869305705137021_wp
    real(wp),parameter :: b3412  =   -3.44991940790890824979834154601622662060370460614931644223924_wp
    real(wp),parameter :: b3413  =    0.228875562160036081760729060738458584294220372552740218459295_wp
    real(wp),parameter :: b3414  =    0.283290599702151415321527419056733335978436595493855789831434_wp
    real(wp),parameter :: b3415  =    3.21085125837766640960131490544236787005557320332238705967955_wp
    real(wp),parameter :: b3416  =   -0.223538777364845699920233756214162507964125230083674032084065_wp
    real(wp),parameter :: b3417  =   -0.707121157204419073518727286207487212130091231955206160635271_wp
    real(wp),parameter :: b3418  =    3.21123345150287080408174729202856500893260034443022374267639_wp
    real(wp),parameter :: b3419  =    1.40954348309669766030414474301123175769045945573548986335553_wp
    real(wp),parameter :: b3420  =   -0.151362053443742613121602276742518111090963026203676055891793_wp
    real(wp),parameter :: b3421  =    0.372350574527014276454724080214619984397121028202148298716575_wp
    real(wp),parameter :: b3422  =    0.252978746406361336722199907762141285915775728129414319261111_wp
    real(wp),parameter :: b3423  =   -3.21085125837766640960131490544236787005557320332238705967955_wp
    real(wp),parameter :: b3424  =   -0.283290599702151415321527419056733335978436595493855789831434_wp
    real(wp),parameter :: b3425  =   -0.228875562160036081760729060738458584294220372552740218459295_wp
    real(wp),parameter :: b3426  =   -0.246465780813629305833609291181891407799228103869305705137021_wp
    real(wp),parameter :: b3427  =   -0.242715791581770239970282927959446515762745971386670541948576_wp
    real(wp),parameter :: b3428  =   -0.205713839404845018859120755122929542277570094982808905393991_wp
    real(wp),parameter :: b3429  =   -0.180392898478697766863635221946775437719620053641849228562435_wp
    real(wp),parameter :: b3430  =   -0.218194354945556658327188241581352107093288824322187941141516_wp
    real(wp),parameter :: b3431  =   -0.164062500000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b3432  =   -0.218750000000000000000000000000000000000000000000000000000000_wp
    real(wp),parameter :: b3433  =   -0.291666666666666666666666666666666666666666666666666666666667_wp

    real(wp),dimension(me%n) :: f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,&
                                f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,&
                                f25,f26,f27,f28,f29,f30,f31,f32,f33,f34

    if (h==zero) then
        xf = x
        terr = zero
        return
    end if

    call me%f(t+a0*h,  x,f0)
    call me%f(t+a1*h,  x+h*(b10*f0),f1)
    call me%f(t+a2*h,  x+h*(b20*f0  + b21 *f1),f2)
    call me%f(t+a3*h,  x+h*(b30*f0  + b31 *f1 + b32*f2),f3)
    call me%f(t+a4*h,  x+h*(b40*f0  + b41 *f1 + b42*f2  + b43*f3),f4)
    call me%f(t+a5*h,  x+h*(b50*f0  + b51 *f1 + b52*f2  + b53*f3  + &
                            b54*f4),f5)
    call me%f(t+a6*h,  x+h*(b60*f0  + b61 *f1 + b62*f2  + b63*f3  + &
                            b64*f4  + b65*f5),f6)
    call me%f(t+a7*h,  x+h*(b70*f0  + b71 *f1 + b72*f2  + b73*f3  + &
                            b74*f4  + b75*f5  + b76*f6),f7)
    call me%f(t+a8*h,  x+h*(b80*f0  + b81 *f1 + b82*f2  + b83*f3  + &
                            b84*f4  + b85*f5  + b86*f6  + b87*f7),f8)
    call me%f(t+a9*h,  x+h*(b90*f0  + b91 *f1 + b92*f2  + b93*f3  + &
                            b94*f4  + b95*f5  + b96*f6  + b97*f7  + &
                            b98*f8),f9)
    call me%f(t+a10*h, x+h*(b100*f0 + b101*f1 + b102*f2 + b103*f3 + &
                            b104*f4 + b105*f5 + b106*f6 + b107*f7 + &
                            b108*f8 + b109*f9),f10)
    call me%f(t+a11*h, x+h*(b110*f0 + b111*f1 + b112*f2 + b113*f3 + &
                            b114*f4 + b115*f5 + b116*f6 + b117*f7 + &
                            b118*f8 + b119*f9 + b1110*f10),f11)
    call me%f(t+a12*h, x+h*(b120*f0 + b121*f1 + b122*f2 + b123*f3 + &
                            b124*f4 + b125*f5 + b126*f6 + b127*f7 + &
                            b128*f8 + b129*f9 + b1210*f10 + b1211*f11),f12)
    call me%f(t+a13*h, x+h*(b130*f0 + b131*f1 + b132*f2 + b133*f3 + &
                            b134*f4 + b135*f5 + b136*f6 + b137*f7 + &
                            b138*f8 + b139*f9 + b1310*f10 + b1311*f11 + &
                            b1312*f12),f13)
    call me%f(t+a14*h, x+h*(b140*f0 + b141*f1 + b142*f2 + b143*f3 + &
                            b144*f4 + b145*f5 + b146*f6 + b147*f7 + &
                            b148*f8 + b149*f9 + b1410*f10 + b1411*f11 + &
                            b1412*f12 + b1413*f13),f14)
    call me%f(t+a15*h, x+h*(b150*f0 + b151*f1 + b152*f2 + b153*f3 + &
                            b154*f4 + b155*f5 + b156*f6 + b157*f7 + &
                            b158*f8 + b159*f9 + b1510*f10 + b1511*f11 + &
                            b1512*f12 + b1513*f13 + b1514*f14),f15)
    call me%f(t+a16*h, x+h*(b160*f0 + b161*f1 + b162*f2 + b163*f3 + &
                            b164*f4 + b165*f5 + b166*f6 + b167*f7 + &
                            b168*f8 + b169*f9 + b1610*f10 + b1611*f11 + &
                            b1612*f12 + b1613*f13 + b1614*f14 + b1615*f15),f16)
    call me%f(t+a17*h, x+h*(b170*f0 + b171*f1 + b172*f2 + b173*f3 + &
                            b174*f4 + b175*f5 + b176*f6 + b177*f7 + &
                            b178*f8 + b179*f9 + b1710*f10 + b1711*f11 + &
                            b1712*f12 + b1713*f13 + b1714*f14 + b1715*f15 + &
                            b1716*f16),f17)
    call me%f(t+a18*h, x+h*(b180*f0 + b181*f1 + b182*f2 + b183*f3 + &
                            b184*f4 + b185*f5 + b186*f6 + b187*f7 + &
                            b188*f8 + b189*f9 + b1810*f10 + b1811*f11 + &
                            b1812*f12 + b1813*f13 + b1814*f14 + b1815*f15 + &
                            b1816*f16 + b1817*f17),f18)
    call me%f(t+a19*h, x+h*(b190*f0 + b191*f1 + b192*f2 + b193*f3 + &
                            b194*f4 + b195*f5 + b196*f6 + b197*f7 + &
                            b198*f8 + b199*f9 + b1910*f10 + b1911*f11 + &
                            b1912*f12 + b1913*f13 + b1914*f14 + b1915*f15 + &
                            b1916*f16 + b1917*f17 + b1918*f18),f19)
    call me%f(t+a20*h, x+h*(b200*f0 + b201*f1 + b202*f2 + b203*f3 + &
                            b204*f4 + b205*f5 + b206*f6 + b207*f7 + &
                            b208*f8 + b209*f9 + b2010*f10 + b2011*f11 + &
                            b2012*f12 + b2013*f13 + b2014*f14 + b2015*f15 + &
                            b2016*f16 + b2017*f17 + b2018*f18 + b2019*f19),f20)
    call me%f(t+a21*h, x+h*(b210*f0 + b211*f1 + b212*f2 + b213*f3 + &
                            b214*f4 + b215*f5 + b216*f6 + b217*f7 + &
                            b218*f8 + b219*f9 + b2110*f10 + b2111*f11 + &
                            b2112*f12 + b2113*f13 + b2114*f14 + b2115*f15 + &
                            b2116*f16 + b2117*f17 + b2118*f18 + b2119*f19 + &
                            b2120*f20),f21)
    call me%f(t+a22*h, x+h*(b220*f0 + b221*f1 + b222*f2 + b223*f3 + &
                            b224*f4 + b225*f5 + b226*f6 + b227*f7 + &
                            b228*f8 + b229*f9 + b2210*f10 + b2211*f11 + &
                            b2212*f12 + b2213*f13 + b2214*f14 + b2215*f15 + &
                            b2216*f16 + b2217*f17 + b2218*f18 + b2219*f19 + &
                            b2220*f20 + b2221*f21),f22)
    call me%f(t+a23*h, x+h*(b230*f0 + b231*f1 + b232*f2 + b233*f3 + &
                            b234*f4 + b235*f5 + b236*f6 + b237*f7 + &
                            b238*f8 + b239*f9 + b2310*f10 + b2311*f11 + &
                            b2312*f12 + b2313*f13 + b2314*f14 + b2315*f15 + &
                            b2316*f16 + b2317*f17 + b2318*f18 + b2319*f19 + &
                            b2320*f20 + b2321*f21 + b2322*f22),f23)
    call me%f(t+a24*h, x+h*(b240*f0 + b241*f1 + b242*f2 + b243*f3 + &
                            b244*f4 + b245*f5 + b246*f6 + b247*f7 + &
                            b248*f8 + b249*f9 + b2410*f10 + b2411*f11 + &
                            b2412*f12 + b2413*f13 + b2414*f14 + b2415*f15 + &
                            b2416*f16 + b2417*f17 + b2418*f18 + b2419*f19 + &
                            b2420*f20 + b2421*f21 + b2422*f22 + b2423*f23),f24)
    call me%f(t+a25*h, x+h*(b250*f0 + b251*f1 + b252*f2 + b253*f3 + &
                            b254*f4 + b255*f5 + b256*f6 + b257*f7 + &
                            b258*f8 + b259*f9 + b2510*f10 + b2511*f11 + &
                            b2512*f12 + b2513*f13 + b2514*f14 + b2515*f15 + &
                            b2516*f16 + b2517*f17 + b2518*f18 + b2519*f19 + &
                            b2520*f20 + b2521*f21 + b2522*f22 + b2523*f23 + &
                            b2524*f24),f25)
    call me%f(t+a26*h, x+h*(b260*f0 + b261*f1 + b262*f2 + b263*f3 + &
                            b264*f4 + b265*f5 + b266*f6 + b267*f7 + &
                            b268*f8 + b269*f9 + b2610*f10 + b2611*f11 + &
                            b2612*f12 + b2613*f13 + b2614*f14 + b2615*f15 + &
                            b2616*f16 + b2617*f17 + b2618*f18 + b2619*f19 + &
                            b2620*f20 + b2621*f21 + b2622*f22 + b2623*f23 + &
                            b2624*f24 + b2625*f25),f26)
    call me%f(t+a27*h, x+h*(b270*f0 + b271*f1 + b272*f2 + b273*f3 + &
                            b274*f4 + b275*f5 + b276*f6 + b277*f7 + &
                            b278*f8 + b279*f9 + b2710*f10 + b2711*f11 + &
                            b2712*f12 + b2713*f13 + b2714*f14 + b2715*f15 + &
                            b2716*f16 + b2717*f17 + b2718*f18 + b2719*f19 + &
                            b2720*f20 + b2721*f21 + b2722*f22 + b2723*f23 + &
                            b2724*f24 + b2725*f25 + b2726*f26),f27)
    call me%f(t+a28*h, x+h*(b280*f0 + b281*f1 + b282*f2 + b283*f3 + &
                            b284*f4 + b285*f5 + b286*f6 + b287*f7 + &
                            b288*f8 + b289*f9 + b2810*f10 + b2811*f11 + &
                            b2812*f12 + b2813*f13 + b2814*f14 + b2815*f15 + &
                            b2816*f16 + b2817*f17 + b2818*f18 + b2819*f19 + &
                            b2820*f20 + b2821*f21 + b2822*f22 + b2823*f23 + &
                            b2824*f24 + b2825*f25 + b2826*f26 + b2827*f27),f28)
    call me%f(t+a29*h, x+h*(b290*f0 + b291*f1 + b292*f2 + b293*f3 + &
                            b294*f4 + b295*f5 + b296*f6 + b297*f7 + &
                            b298*f8 + b299*f9 + b2910*f10 + b2911*f11 + &
                            b2912*f12 + b2913*f13 + b2914*f14 + b2915*f15 + &
                            b2916*f16 + b2917*f17 + b2918*f18 + b2919*f19 + &
                            b2920*f20 + b2921*f21 + b2922*f22 + b2923*f23 + &
                            b2924*f24 + b2925*f25 + b2926*f26 + b2927*f27 + &
                            b2928*f28),f29)
    call me%f(t+a30*h, x+h*(b300*f0 + b301*f1 + b302*f2 + b303*f3 + &
                            b304*f4 + b305*f5 + b306*f6 + b307*f7 + &
                            b308*f8 + b309*f9 + b3010*f10 + b3011*f11 + &
                            b3012*f12 + b3013*f13 + b3014*f14 + b3015*f15 + &
                            b3016*f16 + b3017*f17 + b3018*f18 + b3019*f19 + &
                            b3020*f20 + b3021*f21 + b3022*f22 + b3023*f23 + &
                            b3024*f24 + b3025*f25 + b3026*f26 + b3027*f27 + &
                            b3028*f28 + b3029*f29),f30)
    call me%f(t+a31*h, x+h*(b310*f0 + b311*f1 + b312*f2 + b313*f3 + &
                            b314*f4 + b315*f5 + b316*f6 + b317*f7 + &
                            b318*f8 + b319*f9 + b3110*f10 + b3111*f11 + &
                            b3112*f12 + b3113*f13 + b3114*f14 + b3115*f15 + &
                            b3116*f16 + b3117*f17 + b3118*f18 + b3119*f19 + &
                            b3120*f20 + b3121*f21 + b3122*f22 + b3123*f23 + &
                            b3124*f24 + b3125*f25 + b3126*f26 + b3127*f27 + &
                            b3128*f28 + b3129*f29 + b3130*f30),f31)
    call me%f(t+a32*h, x+h*(b320*f0 + b321*f1 + b322*f2 + b323*f3 + &
                            b324*f4 + b325*f5 + b326*f6 + b327*f7 + &
                            b328*f8 + b329*f9 + b3210*f10 + b3211*f11 + &
                            b3212*f12 + b3213*f13 + b3214*f14 + b3215*f15 + &
                            b3216*f16 + b3217*f17 + b3218*f18 + b3219*f19 + &
                            b3220*f20 + b3221*f21 + b3222*f22 + b3223*f23 + &
                            b3224*f24 + b3225*f25 + b3226*f26 + b3227*f27 + &
                            b3228*f28 + b3229*f29 + b3230*f30 + b3231*f31),f32)
    call me%f(t+a33*h, x+h*(b330*f0 + b331*f1 + b332*f2 + b333*f3 + &
                            b334*f4 + b335*f5 + b336*f6 + b337*f7 + &
                            b338*f8 + b339*f9 + b3310*f10 + b3311*f11 + &
                            b3312*f12 + b3313*f13 + b3314*f14 + b3315*f15 + &
                            b3316*f16 + b3317*f17 + b3318*f18 + b3319*f19 + &
                            b3320*f20 + b3321*f21 + b3322*f22 + b3323*f23 + &
                            b3324*f24 + b3325*f25 + b3326*f26 + b3327*f27 + &
                            b3328*f28 + b3329*f29 + b3330*f30 + b3331*f31 + &
                            b3332*f32),f33)
    call me%f(t+a34*h, x+h*(b340*f0 + b341*f1 + b342*f2 + b343*f3 + &
                            b344*f4 + b345*f5 + b346*f6 + b347*f7 + &
                            b348*f8 + b349*f9 + b3410*f10 + b3411*f11 + &
                            b3412*f12 + b3413*f13 + b3414*f14 + b3415*f15 + &
                            b3416*f16 + b3417*f17 + b3418*f18 + b3419*f19 + &
                            b3420*f20 + b3421*f21 + b3422*f22 + b3423*f23 + &
                            b3424*f24 + b3425*f25 + b3426*f26 + b3427*f27 + &
                            b3428*f28 + b3429*f29 + b3430*f30 + b3431*f31 + &
                            b3432*f32 + b3433*f33),f34)

    xf = x+h*(  c0*f0   + &
                c1*f1   + &
                c2*f2   + &
                c3*f3   + &
                c4*f4   + &
                c5*f5   + &
                c6*f6   + &
                c7*f7   + &
                c8*f8   + &
                c9*f9   + &
                c10*f10 + &
                c11*f11 + &
                c12*f12 + &
                c13*f13 + &
                c14*f14 + &
                c15*f15 + &
                c16*f16 + &
                c17*f17 + &
                c18*f18 + &
                c19*f19 + &
                c20*f20 + &
                c21*f21 + &
                c22*f22 + &
                c23*f23 + &
                c24*f24 + &
                c25*f25 + &
                c26*f26 + &
                c27*f27 + &
                c28*f28 + &
                c29*f29 + &
                c30*f30 + &
                c31*f31 + &
                c32*f32 + &
                c33*f33 + &
                c34*f34 )

    terr = (1.0_wp/1000.0_wp)*h*(f1-f33)

    end subroutine rkf1412
!*****************************************************************************************

!*****************************************************************************************
!>
!  Returns the order of the rkf78 method.

    pure function rkf78_order(me) result(p)

    implicit none

    class(rkf78_class),intent(in) :: me
    integer                       :: p    !! order of the method

    p = 7

    end function rkf78_order
!*****************************************************************************************

!*****************************************************************************************
!>
!  Returns the order of the rkf89 method.

    pure function rkf89_order(me) result(p)

    implicit none

    class(rkf89_class),intent(in) :: me
    integer                       :: p    !! order of the method

    p = 8

    end function rkf89_order
!*****************************************************************************************

!*****************************************************************************************
!>
!  Returns the order of the rkv89 method.

    pure function rkv89_order(me) result(p)

    implicit none

    class(rkv89_class),intent(in) :: me
    integer                       :: p    !! order of the method

    p = 8

    end function rkv89_order
!*****************************************************************************************

!*****************************************************************************************
!>
!  Returns the order of the [[rkf108]] method.

    pure function rkf108_order(me) result(p)

    implicit none

    class(rkf108_class),intent(in) :: me
    integer                        :: p    !! order of the method

    p = 10

    end function rkf108_order
!*****************************************************************************************

!*****************************************************************************************
!>
!  Returns the order of the [[rkf1210]] method.

    pure function rkf1210_order(me) result(p)

    implicit none

    class(rkf1210_class),intent(in) :: me
    integer                         :: p    !! order of the method

    p = 12

    end function rkf1210_order
!*****************************************************************************************

!*****************************************************************************************
!>
!  Returns the order of the [[rkf1412]] method.

    pure function rkf1412_order(me) result(p)

    implicit none

    class(rkf1412_class),intent(in) :: me
    integer                         :: p    !! order of the method

    p = 14

    end function rkf1412_order
!*****************************************************************************************

!*****************************************************************************************
!>
!  Computes a starting step size to be used in solving initial
!  value problems in ordinary differential equations.
!
!  It is based on an estimate of the local lipschitz constant for the
!  differential equation (lower bound on a norm of the jacobian) ,
!  a bound on the differential equation (first derivative), and
!  a bound on the partial derivative of the equation with respect to
!  the independent variable. (all approximated near the initial point a)
!
!@note Subroutine hstart also uses the `me%stepsize_method%norm`
!      function for computing vector norms
!
!@note This routine is from [DDEABM](https://github.com/jacobwilliams/ddeabm).
!
!# History
!   * 820301  date written -- watts, h. a., (snla)
!   * 890531  changed all specific intrinsics to generic.  (wrb)
!   * 890831  modified array declarations.  (wrb)
!   * 890911  removed unnecessary intrinsics.  (wrb)
!   * 891024  changed references from dvnorm to dhvnrm.  (wrb)
!   * 891214  prologue converted to version 4.0 format.  (bab)
!   * 900328  added type section.  (wrb)
!   * 910722  updated author section.  (als)
!   * December, 2015 : Refactored this routine (jw)
!   * April 2016 : Some modifications for the variable-step RK module (jw)

    subroutine hstart(me,a,b,y,yprime,etol,h)

    implicit none

    class(rk_variable_step_class),intent(inout) :: me
    real(wp),intent(in)                :: a         !! the initial point of integration.
    real(wp),intent(in)                :: b         !! a value of the independent variable used to define
                                                    !! the direction of integration. a reasonable choice is to
                                                    !! set `b` to the first point at which a solution is desired.
                                                    !! you can also use `b`, if necessary, to restrict the length
                                                    !! of the first integration step because the algorithm will
                                                    !! not compute a starting step length which is bigger than
                                                    !! `abs(b-a)`, unless `b` has been chosen too close to `a`.
                                                    !! (it is presumed that hstart has been called with `b`
                                                    !! different from `a` on the machine being used. also see the
                                                    !! discussion about the parameter `small`.)
    real(wp),dimension(me%n),intent(in) :: y        !! the vector of initial values of the `neq` solution
                                                    !! components at the initial point `a`.
    real(wp),dimension(me%n),intent(in) :: yprime   !! the vector of derivatives of the `neq`
                                                    !! solution components at the initial point `a`.
                                                    !! (defined by the differential equations in subroutine `me%f`)
    real(wp),dimension(me%n),intent(in) :: etol     !! the vector of error tolerances corresponding to
                                                    !! the `neq` solution components. it is assumed that all
                                                    !! elements are positive. following the first integration
                                                    !! step, the tolerances are expected to be used by the
                                                    !! integrator in an error test which roughly requires that
                                                    !! `abs(local error) <= etol` for each vector component.
    real(wp),intent(out) :: h       !! appropriate starting step size to be attempted by the
                                    !! differential equation method.

    real(wp),dimension(me%n) :: spy  !! work array which provide the routine with needed storage space.
    real(wp),dimension(me%n) :: pv   !! work array which provide the routine with needed storage space.
    real(wp),dimension(me%n) :: yp   !! work array which provide the routine with needed storage space.
    real(wp),dimension(me%n) :: sf   !! work array which provide the routine with needed storage space.

    real(wp),parameter :: small  = epsilon(one)
    real(wp),parameter :: big    = huge(one)
    real(wp),parameter :: relper = small**0.375_wp

    integer :: j, k, lk
    real(wp) :: absdx, da, delf, dely,&
                dfdub, dfdxb,&
                dx, dy, fbnd,&
                srydpb, tolexp, tolmin, tolp, tolsum, ydpb
    integer :: morder    !! the order of the formula which will be used by
                         !! the initial value method for taking the first integration
                         !! step.

    morder = me%p
    dx = b - a
    absdx = abs(dx)

    ! compute an approximate bound (dfdxb) on the partial
    ! derivative of the equation with respect to the
    ! independent variable. protect against an overflow.
    ! also compute a bound (fbnd) on the first derivative
    ! locally.

    da = sign(max(min(relper*abs(a),absdx),100.0_wp*small*abs(a)),dx)
    if (da == zero) da = relper*dx
    call me%f(a+da,y,sf)
    yp = sf - yprime
    delf = me%stepsize_method%norm(yp)
    dfdxb = big
    if (delf < big*abs(da)) dfdxb = delf/abs(da)
    fbnd = me%stepsize_method%norm(sf)

    ! compute an estimate (dfdub) of the local lipschitz
    ! constant for the system of differential equations. this
    ! also represents an estimate of the norm of the jacobian
    ! locally.  three iterations (two when neq=1) are used to
    ! estimate the lipschitz constant by numerical differences.
    ! the first perturbation vector is based on the initial
    ! derivatives and direction of integration. the second
    ! perturbation vector is formed using another evaluation of
    ! the differential equation.  the third perturbation vector
    ! is formed using perturbations based only on the initial
    ! values. components that are zero are always changed to
    ! non-zero values (except on the first iteration). when
    ! information is available, care is taken to ensure that
    ! components of the perturbation vector have signs which are
    ! consistent with the slopes of local solution curves.
    ! also choose the largest bound (fbnd) for the first
    ! derivative.
    !
    ! perturbation vector size is held
    ! constant for all iterations. compute
    ! this change from the
    ! size of the vector of initial
    ! values.

    dely = relper*me%stepsize_method%norm(y)
    if (dely == zero) dely = relper
    dely = sign(dely,dx)
    delf = me%stepsize_method%norm(yprime)
    fbnd = max(fbnd,delf)
    if (delf == zero) then
        ! cannot have a null perturbation vector
        spy  = zero
        yp   = one
        delf = me%stepsize_method%norm(yp)
    else
        ! use initial derivatives for first perturbation
        spy = yprime
        yp  = yprime
    end if

    dfdub = zero
    lk = min(me%n+1,3)
    do k = 1, lk
        ! define perturbed vector of initial values
        pv = y + yp * (dely/delf)
        if (k == 2) then
            ! use a shifted value of the independent variable
            ! in computing one estimate
            call me%f(a+da,pv,yp)
            pv = yp - sf
        else
            ! evaluate derivatives associated with perturbed
            ! vector and compute corresponding differences
            call me%f(a,pv,yp)
            pv = yp - yprime
        end if
        ! choose largest bounds on the first derivative
        ! and a local lipschitz constant
        fbnd = max(fbnd,me%stepsize_method%norm(yp))
        delf = me%stepsize_method%norm(pv)
        if (delf >= big*abs(dely)) then
            ! protect against an overflow
            dfdub = big
            exit
        end if
        dfdub = max(dfdub,delf/abs(dely))
        if (k == lk) exit

        ! choose next perturbation vector
        if (delf == zero) delf = one
        do j = 1, me%n
            if (k == 2) then
                dy = y(j)
                if (dy == zero) dy = dely/relper
            else
                dy = abs(pv(j))
                if (dy == zero) dy = delf
            end if
            if (spy(j) == zero) spy(j) = yp(j)
            if (spy(j) /= zero) dy = sign(dy,spy(j))
            yp(j) = dy
        end do
        delf = me%stepsize_method%norm(yp)
    end do

    ! compute a bound (ydpb) on the norm of the second derivative

    ydpb = dfdxb + dfdub*fbnd

    ! define the tolerance parameter upon which the starting step
    ! size is to be based.  a value in the middle of the error
    ! tolerance range is selected.

    tolmin = big
    tolsum = zero
    do k = 1, me%n
        tolexp = log10(etol(k))
        tolmin = min(tolmin,tolexp)
        tolsum = tolsum + tolexp
    end do
    tolp = 10.0_wp**(0.5_wp*(tolsum/me%n + tolmin)/(morder+1))

    ! compute a starting step size based on the above first and
    ! second derivative information
    !
    ! restrict the step length to be not bigger
    ! than abs(b-a). (unless b is too close to a)

    h = absdx

    if (ydpb == zero .and. fbnd == zero) then
        ! both first derivative term (fbnd) and second
        ! derivative term (ydpb) are zero
        if (tolp < one) h = absdx*tolp
    elseif (ydpb == zero) then
        ! only second derivative term (ydpb) is zero
        if (tolp < fbnd*absdx) h = tolp/fbnd
    else
        ! second derivative term (ydpb) is non-zero
        srydpb = sqrt(0.5_wp*ydpb)
        if (tolp < srydpb*absdx) h = tolp/srydpb
    end if

    ! further restrict the step length to be not bigger than  1/dfdub
    if (h*dfdub > one) h = one/dfdub

    ! finally, restrict the step length to be not
    ! smaller than 100*small*abs(a). however, if
    ! a=0. and the computed h underflowed to zero,
    ! the algorithm returns small*abs(b) for the step length.
    h = max(h,100.0_wp*small*abs(a))
    if (h == zero) h = small*abs(b)

    ! now set direction of integration
    h = sign(h,dx)

    end subroutine hstart
!*****************************************************************************************

!*****************************************************************************************
!>
!  computation of an initial step size guess
!
!@note This routine is from dop853. It was modified for this module.

    function hinit(me,x,y,posneg,f0,hmax,atol,rtol)

    implicit none

    class(rk_variable_step_class),intent(inout) :: me
    real(wp),intent(in)               :: x
    real(wp),dimension(:),intent(in)  :: y       !! dimension(n)
    real(wp),intent(in)               :: posneg  !! posneg = sign(1.0_wp,xend-x)
    real(wp),dimension(:),intent(in)  :: f0      !! dimension(n)
    real(wp),intent(in)               :: hmax
    real(wp),dimension(:),intent(in)  :: atol
    real(wp),dimension(:),intent(in)  :: rtol

    real(wp) :: der12,der2,dnf,dny,h,h1,hinit,sk
    integer :: i
    integer :: iord  !! order of the method
    real(wp),dimension(me%n) :: f1,y1

    iord = me%p

    ! compute a first guess for explicit euler as
    !   h = 0.01 * norm (y0) / norm (f0)
    ! the increment for explicit euler is small
    ! compared to the solution
    dnf = zero
    dny = zero
    do i = 1 , me%n
        sk = atol(i) + rtol(i)*abs(y(i))
        dnf = dnf + (f0(i)/sk)**2
        dny = dny + (y(i)/sk)**2
    end do
    if ( dnf<=1.0e-10_wp .or. dny<=1.0e-10_wp ) then
        h = 1.0e-6_wp
    else
        h = sqrt(dny/dnf)*0.01_wp
    end if
    h = min(h,hmax)
    h = sign(h,posneg)
    ! perform an explicit euler step
    do i = 1 , me%n
        y1(i) = y(i) + h*f0(i)
    end do
    call me%f(x+h,y1,f1)
    ! estimate the second derivative of the solution
    der2 = zero
    do i = 1 , me%n
        sk = atol(i) + rtol(i)*abs(y(i))
        der2 = der2 + ((f1(i)-f0(i))/sk)**2
    end do
    der2 = sqrt(der2)/h
    ! step size is computed such that
    !  h**iord * max ( norm (f0), norm (der2)) = 0.01
    der12 = max(abs(der2),sqrt(dnf))
    if ( der12<=1.0e-15_wp ) then
        h1 = max(1.0e-6_wp,abs(h)*1.0e-3_wp)
    else
        h1 = (0.01_wp/der12)**(1.0_wp/iord)
    end if

    h = min(100.0_wp*abs(h),h1,hmax)
    hinit = sign(h,posneg)

    end function hinit
!*****************************************************************************************

!*****************************************************************************************
!>
!  Unit tests for step size adjustment routines.

    subroutine step_size_test()

    implicit none

    type(stepsize_class)   :: s1     !! for testing the different methods
    type(stepsize_class)   :: s2     !! for testing the different methods
    type(stepsize_class)   :: s3     !! for testing the different methods
    real(wp)               :: h      !! current step size
    real(wp)               :: tol    !! abs error tolerance
    real(wp)               :: err    !! truncation error estimate
    integer                :: p      !! order of the method
    real(wp)               :: hnew   !! new step size
    logical                :: accept !! if the step is accepted

    write(*,*) ''
    write(*,*) '---------------'
    write(*,*) ' step_size_test'
    write(*,*) '---------------'
    write(*,*) ''

    h   = 10.0_wp
    tol = 1.0e-9_wp
    err = 1.0e-7_wp
    p   = 4

    call s1%initialize()
    call s1%compute_stepsize(h,tol,err,p,hnew,accept)
    write(*,*) 'stepsize_hull    : hnew = ', hnew

    call s2%initialize()
    call s2%compute_stepsize(h,tol,err,p,hnew,accept)
    write(*,*) 'stepsize_stoer_1 : hnew = ', hnew

    call s3%initialize()
    call s3%compute_stepsize(h,tol,err,p,hnew,accept)
    write(*,*) 'stepsize_stoer_2 : hnew = ', hnew

    end subroutine step_size_test
!*****************************************************************************************

!*****************************************************************************************
!>
!  Unit test of the [[rk_module]].
!  Integrate a two-body orbit around the Earth.

    subroutine rk_test_variable_step()

    use orbital_mechanics_module, only: orbital_elements_to_rv
    use conversion_module,        only: deg2rad

    implicit none

    !type,extends(rkf78_class) :: spacecraft
    !type,extends(rkf89_class) :: spacecraft
    !type,extends(rkv89_class) :: spacecraft
    !type,extends(rkf108_class) :: spacecraft
    !type,extends(rkf1210_class) :: spacecraft
    type,extends(rkf1412_class) :: spacecraft
        !! spacecraft propagation type.
        real(wp) :: mu     = zero     !! central body gravitational parameter (km3/s2)
        integer  :: fevals = 0        !! number of function evaluations
        logical  :: first  = .true.   !! first point is being exported
    end type spacecraft

    integer,parameter  :: n = 6            !! number of state variables
    real(wp),parameter :: tol = 1.0e-12_wp !! event location tolerance

    type(spacecraft) :: s, s2
    real(wp) :: t0,tf,x0(n),dt,xf(n),x02(n),gf,tf_actual,rtol,atol
    integer :: ierr !! error flag
    type(stepsize_class) :: sz
    integer :: icase
    logical :: relative_err
    real(wp) :: safety_factor, hfactor_accept
    integer :: p_exponent_offset
    real(wp) :: mu
    real(wp) :: a,p,ecc,inc,raan,aop,tru
    real(wp),dimension(3) :: r,v

    write(*,*) ''
    write(*,*) '---------------'
    write(*,*) ' rk_variable_step_test'
    write(*,*) '---------------'
    write(*,*) ''

    !***************************************************************************

    do icase = 1, 4

        write(*,*) ''
        write(*,*) '***************'
        write(*,*) ' case' , icase
        write(*,*) '***************'
        write(*,*) ''

        ! ... relative_err,safety_factor,p_exponent_offset don't
        !     seem to change the results at all ....

        select case (icase)
        case(1)
            ! defaults
            relative_err = .false.
            safety_factor = 0.8_wp
            p_exponent_offset = 1
            hfactor_accept = 2.0_wp    ! changing this does change result
        case(2)
            relative_err = .false.
            safety_factor = 0.9_wp
            p_exponent_offset = 1
            hfactor_accept = 5.0_wp
        case(3)
            relative_err = .false.
            safety_factor = 0.95_wp
            p_exponent_offset = 1
            hfactor_accept = 10.0_wp
        case(4)
            relative_err = .false.
            safety_factor = 0.9_wp
            p_exponent_offset = 0
            hfactor_accept = 2.0_wp
        end select

        !step size constructor:
        !call sz%initialize(hmin=1.0e-6_wp,hmax=1.0e6_wp)
        call sz%initialize( hmin              = 1.0e-6_wp,        &
                            hmax              = 1.0e+6_wp,        &
                            hfactor_reject    = 0.5_wp,           &
                            hfactor_accept    = hfactor_accept,   &
                            max_attempts      = 1000,              &
                            accept_mode       = 2,                &
                            norm              = maxval_func,      &
                            relative_err      = relative_err,     &
                            safety_factor     = safety_factor,    &
                            p_exponent_offset = p_exponent_offset )

        !integrator constructor:
        call s%initialize(n=n,f=twobody,rtol=[1.0e-15_wp],atol=[1.0e-12_wp],&
                            stepsize_method=sz,report=twobody_report)

        !initial conditions:
        !write(*,*) 'general elliptical:'
        mu = 3.9860043543609593E+05_wp ! for earth
        a    = 8000.0_wp ! km
        ecc  = 0.1_wp
        inc  = 45.0_wp * deg2rad
        raan = 45.0_wp * deg2rad
        aop  = 45.0_wp * deg2rad
        tru  = 45.0_wp * deg2rad
        p = a * (one - ecc**2)

        call orbital_elements_to_rv(mu, p, ecc, inc, raan, aop, tru, r, v)
        x0 = [r,v]

        !x0   = [10000.0_wp,10000.0_wp,10000.0_wp,&   ! initial state [r,v] (km,km/s)
        !        1.0_wp,2.0_wp,3.0_wp]
        t0   = zero              ! initial time (sec)
        !dt   = 0.0_wp           ! automatically compute an initial time step (sec)
        dt   = 10.0_wp           ! initial time step (sec)
        tf   = 10000.0_wp         ! final time (sec)
        s%mu = 398600.436233_wp  ! main body is Earth

        s%num_rejected_steps = 0
        s%fevals = 0
        s%first = .true.
        call s%integrate(t0,x0,dt,tf,xf,ierr)    !forward
        write(*,*) ''
        write(*,*) 'ierr = ', ierr
        write(*,'(A/,*(F15.6/))') 'Final state:',xf
        write(*,'(A,I5)') 'Function evaluations:', s%fevals
        write(*,'(A,I5)') 'Number of rejected steps:',s%num_rejected_steps   ! why is this 0 when ierr = -3 ???

        s%num_rejected_steps = 0
        s%fevals = 0
        s%report => null()    !disable reporting
        call s%integrate(tf,xf,-dt,t0,x02,ierr)  !backwards

        write(*,*) 'ierr = ', ierr
        write(*,'(A/,*(E20.12/))') 'Error:',x02-x0
        write(*,'(A,I5)') 'Function evaluations:', s%fevals
        write(*,'(A,I5)') 'Number of rejected steps:',s%num_rejected_steps
        write(*,*) ''

    end do

    !***************************************************************************
    !event finding test:

    write(*,*) ' Event test - integrate until z = 12,000'

   ! NOTE: the following causes an ICE in gfortran 7.1, but works with ifort:
   ! s2 = spacecraft(n=n,f=twobody,g=twobody_event,mu=398600.436233_wp,&
   !                  rtol=[1.0e-12_wp],atol=[1.0e-12_wp],&
   !                  stepsize_method=sz,report=twobody_report)
   ! do it this way instead:
   call s2%initialize(n=n,f=twobody,g=twobody_event,&
                      rtol=[1.0e-12_wp],atol=[1.0e-12_wp],&
                      stepsize_method=sz,&
                      report=twobody_report)
   s2%mu = 398600.436233_wp

   s2%fevals = 0
   s2%first = .true.
   x0 = [10000.0_wp,10000.0_wp,10000.0_wp,&   !initial state [r,v] (km,km/s)
           1.0_wp,2.0_wp,3.0_wp]
   t0 = zero       !initial time (sec)
   dt = 10.0_wp    !time step (sec)
   tf = 1000.0_wp  !final time (sec)

   call s2%integrate_to_event(t0,x0,dt,tf,tol,tf_actual,xf,gf,ierr)
   write(*,*) ''
   write(*,'(A,I5)')         'ierr:       ',ierr
   write(*,'(A/,*(F15.6/))') 'Final time: ',tf_actual
   write(*,'(A/,*(F15.6/))') 'Final state:',xf
   write(*,'(A/,*(F15.6/))') 'Event func :',gf
   write(*,'(A,I5)') 'Function evaluations:', s2%fevals
   write(*,'(A,I5)') 'Number of rejected steps:',s2%num_rejected_steps

    contains
!*****************************************************************************************

    !*********************************************************
        subroutine twobody(me,t,x,xdot)

        !! derivative routine for two-body orbit propagation

        implicit none

        class(rk_variable_step_class),intent(inout)     :: me
        real(wp),intent(in)               :: t
        real(wp),dimension(:),intent(in)  :: x
        real(wp),dimension(:),intent(out) :: xdot

        real(wp),dimension(3) :: r,v,a_grav
        real(wp) :: rmag

        select type (me)
        class is (spacecraft)

            r = x(1:3)
            v = x(4:6)
            rmag = norm2(r)
            a_grav = -me%mu/rmag**3 * r !acceleration due to gravity

            xdot(1:3) = v
            xdot(4:6) = a_grav

            me%fevals = me%fevals + 1

        end select

        end subroutine twobody
    !*********************************************************

    !*********************************************************
        subroutine twobody_report(me,t,x)

        !! report function - write time,state to console

        implicit none

        class(rk_variable_step_class),intent(inout)    :: me
        real(wp),intent(in)              :: t
        real(wp),dimension(:),intent(in) :: x

        select type (me)
        class is (spacecraft)
            if (me%first) then  !print header
                write(*,*) ''
                write(*,'(*(A15,1X))')  'time (sec)','x (km)','y (km)','z (km)',&
                                        'vx (km/s)','vy (km/s)','vz (km/s)'
                me%first = .false.
            end if
        end select

        write(*,'(*(F15.6,1X))') t,x

        end subroutine twobody_report
    !*********************************************************

    !*********************************************************
        subroutine twobody_event(me,t,x,g)

        !! event function (z = 12,000)

        implicit none

        class(rk_variable_step_class),intent(inout)    :: me
        real(wp),intent(in)              :: t
        real(wp),dimension(:),intent(in) :: x
        real(wp),intent(out)             :: g

        g = x(3) - 12000.0_wp

        end subroutine twobody_event
    !*********************************************************

    end subroutine rk_test_variable_step
!*****************************************************************************************

!*****************************************************************************************
    end module rk_module_variable_step
!*****************************************************************************************