Transform geodetic coordinates to geocentric for a reference ellipsoid of specified form.
Status: support routine.
The equatorial radius, A, can be in any units, but meters is the conventional choice.
The flattening, F, is (for the Earth) a value around 0.00335, i.e. around 1/298.
The equatorial radius, A, and the height, HEIGHT, must be given in the same units, and determine the units of the returned geocentric vector, XYZ.
No validation is performed on individual arguments. The error status J=-1 protects against (unrealistic) cases that would lead to arithmetic exceptions. If an error occurs, XYZ is unchanged.
The inverse transformation is performed in the routine GC2GDE.
The transformation for a standard ellipsoid (such as WGS84) can more conveniently be performed by calling GD2GC, which uses a numerical code (1 for WGS84) to identify the required A and F values.
Green, R.M., Spherical Astronomy, Cambridge University Press, (1985) Section 4.5, p96.
Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed), University Science Books (1992), Section 4.22, p202.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | a | equatorial radius (Notes 1,4) |
||
real(kind=wp), | intent(in) | :: | f | flattening (Notes 2,4) |
||
real(kind=wp), | intent(in) | :: | elong | longitude (radians, east +ve) |
||
real(kind=wp), | intent(in) | :: | phi | latitude (geodetic, radians, Note 4) |
||
real(kind=wp), | intent(in) | :: | height | height above ellipsoid (geodetic, Notes 3,4) |
||
real(kind=wp), | intent(out), | dimension(3) | :: | xyz | geocentric vector (Note 3) |
|
integer, | intent(out) | :: | j |
|
subroutine GD2GCE ( a, f, elong, phi, height, xyz, j )
implicit none
real(wp),intent(in) :: a !! equatorial radius (Notes 1,4)
real(wp),intent(in) :: f !! flattening (Notes 2,4)
real(wp),intent(in) :: elong !! longitude (radians, east +ve)
real(wp),intent(in) :: phi !! latitude (geodetic, radians, Note 4)
real(wp),intent(in) :: height !! height above ellipsoid (geodetic, Notes 3,4)
real(wp),dimension(3),intent(out) :: xyz !! geocentric vector (Note 3)
integer,intent(out) :: j !! status:
!! * 0 = OK
!! * -1 = illegal case (Note 4)
real(wp) :: sp, cp, w, d, ac, as, r
! Functions of geodetic latitude.
sp = sin(phi)
cp = cos(phi)
w = 1.0_wp-f
w = w*w
d = cp*cp + w*sp*sp
if ( d > 0.0_wp ) then
ac = a / sqrt(d)
as = w * ac
! Geocentric vector.
r = ( ac + height ) * cp
xyz(1) = r * cos(elong)
xyz(2) = r * sin(elong)
xyz(3) = ( as + height ) * sp
! Success.
j = 0
else
! Fail.
j = -1
end if
end subroutine GD2GCE