Nonnegative least squares algorithm.
Given an m by n matrix, A, and an m-vector, b, compute an n-vector, x, that solves the least squares problem:
Ax=b subject to x≥0
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(inout), | dimension(mda,n) | :: | a |
on entry, contains the |
|
integer, | intent(in) | :: | mda |
first dimensioning parameter for the array |
||
integer, | intent(in) | :: | m | |||
integer, | intent(in) | :: | n | |||
real(kind=wp), | intent(inout), | dimension(m) | :: | b |
on entry, contains the m-vector |
|
real(kind=wp), | intent(out), | dimension(n) | :: | x |
the solution vector. |
|
real(kind=wp), | intent(out) | :: | rnorm |
euclidean norm of the residual vector. |
||
real(kind=wp), | intent(inout), | dimension(n) | :: | w |
array of working space. on exit |
|
real(kind=wp), | intent(inout), | dimension(m) | :: | zz |
an m-array of working space. |
|
integer, | intent(out) | :: | mode |
this is a success-failure flag with the following meanings:
|
||
integer, | intent(in) | :: | max_iter |
maximum number of iterations (if <=0, then |
subroutine nnls(a,mda,m,n,b,x,rnorm,w,zz,mode,max_iter) implicit none integer,intent(in) :: mda !! first dimensioning parameter for the array `a`. integer,intent(in) :: n real(wp),dimension(mda,n),intent(inout) :: a !! on entry, contains the `m` by `n` !! matrix, `a`. on exit, contains !! the product matrix, `q*a`, where `q` is an !! `m` by `m` orthogonal matrix generated implicitly by !! this subroutine. integer,intent(in) :: m real(wp),dimension(m),intent(inout) :: b !! on entry, contains the m-vector `b`. on exit, contains `q*b`. real(wp),dimension(n),intent(out) :: x !! the solution vector. real(wp),intent(out) :: rnorm !! euclidean norm of the residual vector. real(wp),dimension(n),intent(inout) :: w !! array of working space. on exit `w` will contain !! the dual solution vector. `w` will satisfy `w(i) = 0` !! for all `i` in set `p` and `w(i) <= 0` for all `i` in set `z`. real(wp),dimension(m),intent(inout) :: zz !! an m-array of working space. integer,intent(out) :: mode !! this is a success-failure flag with the following meanings: !! !! * ***1*** the solution has been computed successfully. !! * ***2*** the dimensions of the problem are bad. either `m<=0` or `n<=0`. !! * ***3*** iteration count exceeded. more than `3*n` iterations. integer,intent(in) :: max_iter !! maximum number of iterations (if <=0, then `3*n` is used) integer :: i,ii,ip,iter,itmax,iz,iz1,iz2,izmax,j,jj,jz,l,npp1,nsetp,rtnkey real(wp) :: alpha,asave,cc,sm,ss,t,temp,unorm,up,wmax,ztest real(wp),dimension(1) :: dummy integer,dimension(n) :: index !! an integer working array. !! the contents of this array define the sets !! `p` and `z` as follows: !! !! * `index(1:nsetp) = set p`. !! * `index(iz1:iz2) = set z`. !! !! where: `iz1 = nsetp + 1 = npp1`, `iz2 = n` real(wp),parameter :: factor = 0.01_wp mode = 1 if ( m<=0 .or. n<=0 ) then mode = 2 return end if iter = 0 if (max_iter<=0) then itmax = 3*n else itmax = max_iter end if ! initialize the arrays index(1:n) and x(1:n). x = zero index = [(i, i=1,n)] iz2 = n iz1 = 1 nsetp = 0 npp1 = 1 main : do ! ****** main loop begins here ****** ! quit if all coefficients are already in the solution. ! or if m cols of a have been triangularized. if ( iz1<=iz2 .and. nsetp<m ) then ! compute components of the dual (negative gradient) vector w(). do iz = iz1 , iz2 j = index(iz) sm = zero do l = npp1 , m sm = sm + a(l,j)*b(l) end do w(j) = sm end do do ! find largest positive w(j). wmax = zero do iz = iz1 , iz2 j = index(iz) if ( w(j)>wmax ) then wmax = w(j) izmax = iz end if end do ! if wmax <= 0. go to termination. ! this indicates satisfaction of the kuhn-tucker conditions. if ( wmax<=zero ) then call termination() return end if iz = izmax j = index(iz) ! the sign of w(j) is ok for j to be moved to set p. ! begin the transformation and check new diagonal element to avoid ! near linear dependence. asave = a(npp1,j) call h12(1,npp1,npp1+1,m,a(1,j),1,up,dummy,1,1,0) unorm = zero if ( nsetp/=0 ) then do l = 1 , nsetp unorm = unorm + a(l,j)**2 end do end if unorm = sqrt(unorm) if (abs(a(npp1,j))*factor >= unorm*eps) then ! col j is sufficiently independent. copy b into zz, update zz ! and solve for ztest ( = proposed new value for x(j) ). do l = 1 , m zz(l) = b(l) end do call h12(2,npp1,npp1+1,m,a(1,j),1,up,zz,1,1,1) ztest = zz(npp1)/a(npp1,j) ! see if ztest is positive if ( ztest>zero ) then ! the index j=index(iz) has been selected to be moved from ! set z to set p. update b, update indices, apply householder ! transformations to cols in new set z, zero subdiagonal elts in ! col j, set w(j)=0. do l = 1 , m b(l) = zz(l) end do index(iz) = index(iz1) index(iz1) = j iz1 = iz1 + 1 nsetp = npp1 npp1 = npp1 + 1 if ( iz1<=iz2 ) then do jz = iz1 , iz2 jj = index(jz) call h12(2,nsetp,npp1,m,a(1,j),1,up,a(1,jj),1,mda,1) end do end if if ( nsetp/=m ) then do l = npp1 , m a(l,j) = zero end do end if w(j) = zero ! solve the triangular system. ! store the solution temporarily in zz(). rtnkey = 1 exit end if end if ! reject j as a candidate to be moved from set z to set p. ! restore a(npp1,j), set w(j)=0., and loop back to test dual ! coeffs again. a(npp1,j) = asave w(j) = zero end do else call termination() return end if ! ****** end of main loop ****** secondary : do ! the following block of code is used as an internal subroutine ! to solve the triangular system, putting the solution in zz(). do l = 1 , nsetp ip = nsetp + 1 - l if ( l/=1 ) then do ii = 1 , ip zz(ii) = zz(ii) - a(ii,jj)*zz(ip+1) end do end if jj = index(ip) zz(ip) = zz(ip)/a(ip,jj) end do if (rtnkey/=1 .and. rtnkey/=2) return ! ****** secondary loop begins here ****** ! iteration counter. iter = iter + 1 if ( iter>itmax ) then mode = 3 !write (*,'(/a)') ' nnls quitting on iteration count.' call termination() return end if ! see if all new constrained coeffs are feasible. ! if not compute alpha. alpha = two do ip = 1 , nsetp l = index(ip) if ( zz(ip)<=zero ) then t = -x(l)/(zz(ip)-x(l)) if ( alpha>t ) then alpha = t jj = ip end if end if end do ! if all new constrained coeffs are feasible then alpha will ! still = 2. if so exit from secondary loop to main loop. if ( abs(alpha-two)<=zero ) then ! ****** end of secondary loop ****** do ip = 1 , nsetp i = index(ip) x(i) = zz(ip) end do ! all new coeffs are positive. loop back to beginning. cycle main end if ! otherwise use alpha which will be between 0. and 1. to ! interpolate between the old x and the new zz. do ip = 1 , nsetp l = index(ip) x(l) = x(l) + alpha*(zz(ip)-x(l)) end do ! modify a and b and the index arrays to move coefficient i ! from set p to set z. i = index(jj) move_p : do x(i) = zero if ( jj/=nsetp ) then jj = jj + 1 do j = jj , nsetp ii = index(j) index(j-1) = ii call g1(a(j-1,ii),a(j,ii),cc,ss,a(j-1,ii)) a(j,ii) = zero do l = 1 , n if ( l/=ii ) then ! apply procedure g2 (cc,ss,a(j-1,l),a(j,l)) temp = a(j-1,l) a(j-1,l) = cc*temp + ss*a(j,l) a(j,l) = -ss*temp + cc*a(j,l) end if end do ! apply procedure g2 (cc,ss,b(j-1),b(j)) temp = b(j-1) b(j-1) = cc*temp + ss*b(j) b(j) = -ss*temp + cc*b(j) end do end if npp1 = nsetp nsetp = nsetp - 1 iz1 = iz1 - 1 index(iz1) = i ! see if the remaining coeffs in set p are feasible. they should ! be because of the way alpha was determined. ! if any are infeasible it is due to round-off error. any ! that are nonpositive will be set to zero ! and moved from set p to set z. do jj = 1 , nsetp i = index(jj) if ( x(i)<=zero ) cycle move_p end do exit move_p end do move_p ! copy b( ) into zz( ). then solve again and loop back. do i = 1 , m zz(i) = b(i) end do rtnkey = 2 end do secondary end do main contains subroutine termination() !! come to here for termination. !! compute the norm of the final residual vector. sm = zero if ( npp1<=m ) then do i = npp1 , m sm = sm + b(i)**2 end do else do j = 1 , n w(j) = zero end do end if rnorm = sqrt(sm) end subroutine termination end subroutine nnls